PURPOSE: Early detection of retinal disorders using optical coherence tomography (OCT) images can prevent vision loss. Since manual screening can be time-consuming, tedious, and fallible, we present a reliable computer-aided diagnosis (CAD) software ...
BACKGROUND: Artificial intelligence is developing rapidly, bringing increasing numbers of intelligent products into daily life. However, it has little progress in dry eye, which is a common disease and associated with meibomian gland dysfunction (MGD...
PROPOSE: The proposed deep learning model with a mask region-based convolutional neural network (Mask R-CNN) can predict choroidal thickness automatically. Changes in choroidal thickness with age can be detected with manual measurements. In this stud...
PURPOSE: To evaluate the effect of intravitreal injection of ranibizumab (IVR) on subfoveal choroidal thickness (SFCT) and its relationship with central macular thickness (CMT) and best-corrected visual acuity (BCVA) changes in eyes with center-invol...
PURPOSE: The purpose of this study was to evaluate the accuracy of the convolutional neural network (CNN) model in glaucoma identification with three primary colors (red, green, blue; RGB) and split color channels using fundus photographs with a smal...
PURPOSE: We investigated using ultrawide-field fundus images with a deep convolutional neural network (DCNN), which is a machine learning technology, to detect treatment-naïve proliferative diabetic retinopathy (PDR).
PURPOSE: In this study, we compared deep learning (DL) with support vector machine (SVM), both of which use three-dimensional optical coherence tomography (3D-OCT) images for detecting epiretinal membrane (ERM).
PURPOSE: To predict exudative age-related macular degeneration (AMD), we combined a deep convolutional neural network (DCNN), a machine-learning algorithm, with Optos, an ultra-wide-field fundus imaging system.
PURPOSE: To investigate rs2107856 single-nucleotide polymorphism (SNP) of CNTNAP2 gene in Turkish population with pseudoexfoliation and to correlate clinical characteristics with the genotypic profile.