AI Medical Compendium Journal:
Medical physics

Showing 1 to 10 of 732 articles

Generation of synthetic CT from MRI for MRI-based attenuation correction of brain PET images using radiomics and machine learning.

Medical physics
BACKGROUND: Accurate quantitative PET imaging in neurological studies requires proper attenuation correction. MRI-guided attenuation correction in PET/MRI remains challenging owing to the lack of direct relationship between MRI intensities and linear...

Impact of tracer uptake rate on quantification accuracy of myocardial blood flow in PET: A simulation study.

Medical physics
BACKGROUND: Cardiac perfusion PET is commonly used to assess ischemia and cardiovascular risk, which enables quantitative measurements of myocardial blood flow (MBF) through kinetic modeling. However, the estimation of kinetic parameters is challengi...

A novel skeletal muscle quantitative method and deep learning-based sarcopenia diagnosis for cervical cancer patients treated with radiotherapy.

Medical physics
BACKGROUND: Sarcopenia is associated with decreased survival in cervical cancer patients treated with radiotherapy. Cone-beam computed tomography (CBCT) was widely used in image-guided radiotherapy. Sarcopenia is assessed by the skeletal muscle index...

Radiotherapy dose prediction using off-the-shelf segmentation networks: A feasibility study with GammaPod planning.

Medical physics
BACKGROUND: Radiotherapy requires precise, patient-specific treatment planning to achieve high-quality dose distributions that improve patient outcomes. Traditional manual planning is time-consuming and clinically impractical for performing necessary...

Dose prediction via deep learning to enhance treatment planning of lung radiotherapy including simultaneous integrated boost techniques.

Medical physics
BACKGROUND: Recent studies have shown deep learning techniques are able to predict three-dimensional (3D) dose distributions of radiotherapy treatment plans. However, their use in dose prediction for treatments with varied prescription doses includin...

Advanced prediction of multi-leaf collimator leaf position using artificial neural network.

Medical physics
BACKGROUND: Multi-leaf collimators (MLCs) are crucial for modern radiotherapy as they ensure precise target irradiation through accurate leaf positioning. Accurate prediction of MLC leaf positions is vital for the effectiveness and safety of treatmen...

Enhancing automated right-sided early-stage breast cancer treatments via deep learning model adaptation without additional training.

Medical physics
BACKGROUND: Input data curation and model training are essential, but time-consuming steps in building a deep-learning (DL) auto-planning model, ensuring high-quality data and optimized performance. Ideally, one would prefer a DL model that exhibits ...

Label-efficient sequential model-based weakly supervised intracranial hemorrhage segmentation in low-data non-contrast CT imaging.

Medical physics
BACKGROUND: In clinical settings, intracranial hemorrhages (ICH) are routinely diagnosed using non-contrast CT (NCCT) in emergency stroke imaging for severity assessment. However, compared to magnetic resonance imaging (MRI), ICH shows low contrast a...

A deep learning-based peer review method for radiotherapy planning.

Medical physics
BACKGROUND: Quality control (QC) in radiotherapy planning is crucial for ensuring treatment efficacy and patient safety. Traditionally, QC relies on standard indicators and subjective assessments, which may lead to inconsistencies.

Neural architecture search with Deep Radon Prior for sparse-view CT image reconstruction.

Medical physics
BACKGROUND: Sparse-view computed tomography (CT) reduces radiation exposure but suffers from severe artifacts caused by insufficient sampling and data scarcity, which compromise image fidelity. Recent advancements in deep learning (DL)-based methods ...