PURPOSE: Image guidance for minimally invasive interventions is usually performed by acquiring fluoroscopic images using a monoplanar or a biplanar C-arm system. However, the projective data provide only limited information about the spatial structur...
PURPOSE: We propose a deep learning-based computer-aided detection (CADe) method to detect breast lesions in ultrafast DCE-MRI sequences. This method uses both the 3D spatial information and temporal information obtained from the early-phase of the d...
PURPOSE: Measurements of breast arterial calcifications (BAC) can offer a personalized, non-invasive approach to risk-stratify women for cardiovascular diseases such as heart attack and stroke. We aim to detect and segment breast arterial calcificati...
PURPOSE: Convolutional neural network (CNN)-based denoising is an effective method for reducing complex computed tomography (CT) noise. However, the image blur induced by denoising processes is a major concern. The main source of image blur is the pi...
PURPOSE: Radiation pneumonitis (RP) is the main source of toxicity in thoracic radiotherapy. This study proposed a deep learning-based dual-omics model, which aims to improve the RP prediction performance by integrating more data points and exploring...
PURPOSE: Magnetic resonance (MR) imaging is an essential diagnostic tool in clinical medicine. Recently, a variety of deep-learning methods have been applied to segmentation tasks in medical images, with promising results for computer-aided diagnosis...
PURPOSE: Dual-source computed tomography (DSCT) uses two source-detector pairs offset by about 90°. In addition to the well-known forward scatter, a special issue in DSCT is cross-scattered radiation from X-ray tube A detected in the detector of syst...
PURPOSE: We propose a treatment planning framework that accounts for weekly lung tumor shrinkage using cone beam computed tomography (CBCT) images with a deep learning-based model.
PURPOSE: The progression of age-related macular degeneration (AMD) is critical to treatment decisions in clinical practice. The disease can be classified into four categories namely, drusen, inactive choroidal neovascularization (CNV), active CNV, an...
PURPOSE: We propose a deep learning method that classifies focal liver lesions (FLLs) into cysts, hemangiomas, and metastases from portal phase abdominal CT images. We propose a synthetic data augmentation process to alleviate the class imbalance and...
Join thousands of healthcare professionals staying informed about the latest AI breakthroughs in medicine. Get curated insights delivered to your inbox.