AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Adenosine

Showing 31 to 40 of 49 articles

Clear Filters

DeepM6ASeq: prediction and characterization of m6A-containing sequences using deep learning.

BMC bioinformatics
BACKGROUND: N6-methyladensine (m6A) is a common and abundant RNA methylation modification found in various species. As a type of post-transcriptional methylation, m6A plays an important role in diverse RNA activities such as alternative splicing, an ...

EPAI-NC: Enhanced prediction of adenosine to inosine RNA editing sites using nucleotide compositions.

Analytical biochemistry
RNA editing process like Adenosine to Intosine (A-to-I) often influences basic functions like splicing stability and most importantly the translation. Thus knowledge about editing sites is of great importance in molecular biology. With the growth of ...

Metabolomics Analysis in Acute Paraquat Poisoning Patients Based on UPLC-Q-TOF-MS and Machine Learning Approach.

Chemical research in toxicology
Most paraquat (PQ) poisoned patients died from acute multiple organ failure (MOF) such as lung, kidney, and heart. However, the exact mechanism of intoxication is still unclear. In order to find out the initial toxic mechanism of PQ poisoning, a bloo...

WHISTLE: a high-accuracy map of the human N6-methyladenosine (m6A) epitranscriptome predicted using a machine learning approach.

Nucleic acids research
N 6-methyladenosine (m6A) is the most prevalent post-transcriptional modification in eukaryotes, and plays a pivotal role in various biological processes, such as splicing, RNA degradation and RNA-protein interaction. We report here a prediction fram...

DeepMRMP: A new predictor for multiple types of RNA modification sites using deep learning.

Mathematical biosciences and engineering : MBE
RNA modification plays an indispensable role in the regulation of organisms. RNA modification site prediction offers an insight into diverse cellular processing. Regarding different types of RNA modification site prediction, it is difficult to tell t...

Neurotransmitter networks in mouse prefrontal cortex are reconfigured by isoflurane anesthesia.

Journal of neurophysiology
This study quantified eight small-molecule neurotransmitters collected simultaneously from prefrontal cortex of C57BL/6J mice ( = 23) during wakefulness and during isoflurane anesthesia (1.3%). Using isoflurane anesthesia as an independent variable e...

iMethyl-Deep: N6 Methyladenosine Identification of Yeast Genome with Automatic Feature Extraction Technique by Using Deep Learning Algorithm.

Genes
One of the most common and well studied post-transcription modifications in RNAs is N6-methyladenosine (m6A) which has been involved with a wide range of biological processes. Over the past decades, N6-methyladenosine produced some positive consequen...

Prediction of N6-methyladenosine sites using convolution neural network model based on distributed feature representations.

Neural networks : the official journal of the International Neural Network Society
N-methyladenosine (mA) is a well-studied and most common interior messenger RNA (mRNA) modification that plays an important function in cell development. NA is found in all kingdoms​ of life and many other cellular processes such as RNA splicing, imm...

m6A-Atlas: a comprehensive knowledgebase for unraveling the N6-methyladenosine (m6A) epitranscriptome.

Nucleic acids research
N 6-Methyladenosine (m6A) is the most prevalent RNA modification on mRNAs and lncRNAs. It plays a pivotal role during various biological processes and disease pathogenesis. We present here a comprehensive knowledgebase, m6A-Atlas, for unraveling the ...

Meta-i6mA: an interspecies predictor for identifying DNA N6-methyladenine sites of plant genomes by exploiting informative features in an integrative machine-learning framework.

Briefings in bioinformatics
DNA N6-methyladenine (6mA) represents important epigenetic modifications, which are responsible for various cellular processes. The accurate identification of 6mA sites is one of the challenging tasks in genome analysis, which leads to an understandi...