AIMC Topic: Adolescent

Clear Filters Showing 111 to 120 of 3145 articles

A prediction model of pediatric bone density from plain spine radiographs using deep learning.

Scientific reports
Osteoporosis, a bone disease characterized by decreased bone mineral density (BMD) resulting in decreased mechanical strength and an increased fracture risk, remains poorly understood in children. Herein, we developed/validated a deep learning-based ...

A deep learning approach for blood glucose monitoring and hypoglycemia prediction in glycogen storage disease.

Scientific reports
Glycogen storage disease (GSD) is a group of rare inherited metabolic disorders characterized by abnormal glycogen storage and breakdown. These disorders are caused by mutations in G6PC1, which is essential for proper glucose storage and metabolism. ...

Our tools redefine what it means to be us: perceived robotic agency decreases the importance of agency in humanity.

BMC psychology
Past work has primarily focused on how the perception of robotic agency influences human-robot interaction and the evaluation of robotic progress, while overlooking its impact on reconsidering what it means to be human. Drawing on social identity the...

Longitudinal brain age in first-episode mania youth treated with lithium or quetiapine.

European neuropsychopharmacology : the journal of the European College of Neuropsychopharmacology
It is unclear if lithium and quetiapine have neuroprotective effects, especially in early stages of bipolar and schizoaffective disorders. Here, an age-related multivariate brain structural measure (i.e., brain-PAD) at baseline and changes in respons...

Machine learning models for improving the diagnosing efficiency of skeletal class I and III in German orthodontic patients.

Scientific reports
The precise and efficient diagnosis of an individual's skeletal class is necessary in orthodontics to ensure correct and stable treatment planning. However, it is difficult to efficiently determine the true skeletal class due to several correlations ...

A diagnosis and prediction algorithm for juvenile myoclonic epilepsy based on clinical and quantitative EEG features.

Seizure
OBJECTIVE: To develop an objective ensemble machine learning model combining clinical features and quantitative EEG metrics (phase locking value [PLV] and multiscale sample entropy [MSE]) to support accurate diagnosis of juvenile myoclonic epilepsy (...

Explainable AI for enhanced accuracy in malaria diagnosis using ensemble machine learning models.

BMC medical informatics and decision making
BACKGROUND: Malaria, an infectious disease caused by protozoan parasites belonging to the Plasmodium genus, remains a significant public health challenge, with African regions bearing the heaviest burden. Machine learning techniques have shown great ...

Predicting the efficacy of microwave ablation of benign thyroid nodules from ultrasound images using deep convolutional neural networks.

BMC medical informatics and decision making
BACKGROUND: Thyroid nodules are frequent in clinical settings, and their diagnosis in adults is growing, with some persons experiencing symptoms. Ultrasound-guided thermal ablation can shrink nodules and alleviate discomfort. Because the degree and r...

Utilizing machine learning and geographic analysis to improve Post-crash traffic injury management and emergency response systems.

International journal of injury control and safety promotion
Traffic injuries are a major public health concern globally. This study uses machine learning (ML) and geographic analysis to analyse road traffic fatalities and improve traffic safety in Nakhon Ratchasima Province, Thailand. Data on road traffic fat...

Evaluation of Anthropometric Measurement Results and the Relationship Between Individual Identity and Geographic Belonging Through Artificial Neural Networks from a Mental Health Perspective.

Nigerian journal of clinical practice
BACKGROUND: Identity verification and geographical belonging are significant issues with mental health implications, particularly in forensic contexts. Anthropometric measurements offer potential insights into these relationships.