AIMC Topic: Aged, 80 and over

Clear Filters Showing 1061 to 1070 of 3433 articles

Predictive analytics for cardiovascular patient readmission and mortality: An explainable approach.

Computers in biology and medicine
BACKGROUND: Cardiovascular patients experience high rates of adverse outcomes following discharge from hospital, which may be preventable through early identification and targeted action. This study aimed to investigate the effectiveness and explaina...

Correlating Age and Hematoma Volume with Extent of Midline Shift in Acute Subdural Hematoma Patients: Validation of an Artificial Intelligence Tool for Volumetric Analysis.

World neurosurgery
OBJECTIVE: Decision for intervention in acute subdural hematoma patients is based on a combination of clinical and radiographic factors. Age has been suggested as a factor to be strongly considered when interpreting midline shift (MLS) and hematoma v...

Exploring the Low-Dose Limit for Focal Hepatic Lesion Detection with a Deep Learning-Based CT Reconstruction Algorithm: A Simulation Study on Patient Images.

Journal of imaging informatics in medicine
This study aims to investigate the maximum achievable dose reduction for applying a new deep learning-based reconstruction algorithm, namely the artificial intelligence iterative reconstruction (AIIR), in computed tomography (CT) for hepatic lesion d...

Enhancing gadoxetic acid-enhanced liver MRI: a synergistic approach with deep learning CAIPIRINHA-VIBE and optimized fat suppression techniques.

European radiology
OBJECTIVE: To investigate whether a deep learning (DL) controlled aliasing in parallel imaging results in higher acceleration (CAIPIRINHA)-volumetric interpolated breath-hold examination (VIBE) technique can improve image quality, lesion conspicuity,...

Automated Detection of Cerebral Microbleeds on Two-dimensional Gradient-recalled Echo T2* Weighted Images Using a Morphology Filter Bank and Convolutional Neural Network.

Magnetic resonance in medical sciences : MRMS : an official journal of Japan Society of Magnetic Resonance in Medicine
PURPOSE: We present a novel algorithm for the automated detection of cerebral microbleeds (CMBs) on 2D gradient-recalled echo T2* weighted images (T2*WIs). This approach combines a morphology filter bank with a convolutional neural network (CNN) to i...

Improved overall image quality in low-dose dual-energy computed tomography enterography using deep-learning image reconstruction.

Abdominal radiology (New York)
OBJECTIVE: To demonstrate the clinical advantages of a deep-learning image reconstruction (DLIR) in low-dose dual-energy computed tomography enterography (DECTE) by comparing images with standard-dose adaptive iterative reconstruction-Veo (ASIR-V) im...

Automatic and robust estimation of sex and chronological age from panoramic radiographs using a multi-task deep learning network: a study on a South Korean population.

International journal of legal medicine
Sex and chronological age estimation are crucial in forensic investigations and research on individual identification. Although manual methods for sex and age estimation have been proposed, these processes are labor-intensive, time-consuming, and err...

Detection of urinary tract stones on submillisievert abdominopelvic CT imaging with deep-learning image reconstruction algorithm (DLIR).

Abdominal radiology (New York)
PURPOSE: Urolithiasis is a chronic condition that leads to repeated CT scans throughout the patient's life. The goal was to assess the diagnostic performance and image quality of submillisievert abdominopelvic computed tomography (CT) using deep lear...

[Reduction of Motion Artifacts in Liver MRI Using Deep Learning with High-pass Filtering].

Nihon Hoshasen Gijutsu Gakkai zasshi
PURPOSE: To investigate whether deep learning with high-pass filtering can be used to effectively reduce motion artifacts in magnetic resonance (MR) images of the liver.