AIMC Topic: Gadolinium DTPA

Clear Filters Showing 1 to 10 of 27 articles

MRI-derived quantification of hepatic vessel-to-volume ratios in chronic liver disease using a deep learning approach.

European radiology experimental
BACKGROUND: We aimed to quantify hepatic vessel volumes across chronic liver disease stages and healthy controls using deep learning-based magnetic resonance imaging (MRI) analysis, and assess correlations with biomarkers for liver (dys)function and ...

Automatic segmentation of liver structures in multi-phase MRI using variants of nnU-Net and Swin UNETR.

Scientific reports
Accurate segmentation of the liver parenchyma, portal veins, hepatic veins, and lesions from MRI is important for hepatic disease monitoring and treatment. Multi-phase contrast enhanced imaging is superior in distinguishing hepatic structures compare...

Gadoxetic acid-enhanced MRI for identifying cholangiocyte phenotype hepatocellular carcinoma by interpretable machine learning: individual application of SHAP.

BMC cancer
PURPOSE: Cholangiocyte phenotype hepatocellular carcinoma (HCC) is highly invasive. This study aims to develop and validate an optimal machine learning model to predict cholangiocyte phenotype HCC based on T1 mapping gadoxetic acid-enhanced MRI and t...

Gd-EOB-DTPA-enhanced MRI radiomics and deep learning models to predict microvascular invasion in hepatocellular carcinoma: a multicenter study.

BMC medical imaging
BACKGROUND: Microvascular invasion (MVI) is an important risk factor for early postoperative recurrence of hepatocellular carcinoma (HCC). Based on gadolinium-ethoxybenzyl-diethylenetriamine pentaacetic acid (Gd-EOB-DTPA)-enhanced magnetic resonance ...

LI-RADS-based hepatocellular carcinoma risk mapping using contrast-enhanced MRI and self-configuring deep learning.

Cancer imaging : the official publication of the International Cancer Imaging Society
BACKGROUND: Hepatocellular carcinoma (HCC) is often diagnosed using gadoxetate disodium-enhanced magnetic resonance imaging (EOB-MRI). Standardized reporting according to the Liver Imaging Reporting and Data System (LI-RADS) can improve Gd-MRI interp...

High-precision MRI of liver and hepatic lesions on gadoxetic acid-enhanced hepatobiliary phase using a deep learning technique.

Japanese journal of radiology
PURPOSE: The purpose of this study was to investigate whether the high-precision magnetic resonance (MR) sequence using modified Fast 3D mode wheel and Precise IQ Engine (PIQE), that was collected in a wheel shape with sequential data filling in the ...

Utility of Thin-slice Fat-suppressed Single-shot T2-weighted MR Imaging with Deep Learning Image Reconstruction as a Protocol for Evaluating the Pancreas.

Magnetic resonance in medical sciences : MRMS : an official journal of Japan Society of Magnetic Resonance in Medicine
PURPOSE: To compare the utility of thin-slice fat-suppressed single-shot T2-weighted imaging (T2WI) with deep learning image reconstruction (DLIR) and conventional fast spin-echo T2WI with DLIR for evaluating pancreatic protocol.

Effectiveness of deep learning-based reconstruction for improvement of image quality and liver tumor detectability in the hepatobiliary phase of gadoxetic acid-enhanced magnetic resonance imaging.

Abdominal radiology (New York)
PURPOSE: To evaluate the effectiveness of deep learning-based reconstruction (DLR) in improving image quality and tumor detectability of isovoxel high-resolution breath-hold fat-suppressed T1-weighted imaging (HR-BH-FS-T1WI) in the hepatobiliary phas...

Deep learning-based compressed SENSE improved diffusion-weighted image quality and liver cancer detection: A prospective study.

Magnetic resonance imaging
PURPOSE: To assess whether diffusion-weighted imaging (DWI) with Compressed SENSE (CS) and deep learning (DL-CS-DWI) can improve image quality and lesion detection in patients at risk for hepatocellular carcinoma (HCC).