AIMC Topic: Gadolinium DTPA

Clear Filters Showing 1 to 10 of 24 articles

Gadoxetic acid-enhanced MRI for identifying cholangiocyte phenotype hepatocellular carcinoma by interpretable machine learning: individual application of SHAP.

BMC cancer
PURPOSE: Cholangiocyte phenotype hepatocellular carcinoma (HCC) is highly invasive. This study aims to develop and validate an optimal machine learning model to predict cholangiocyte phenotype HCC based on T1 mapping gadoxetic acid-enhanced MRI and t...

Gd-EOB-DTPA-enhanced MRI radiomics and deep learning models to predict microvascular invasion in hepatocellular carcinoma: a multicenter study.

BMC medical imaging
BACKGROUND: Microvascular invasion (MVI) is an important risk factor for early postoperative recurrence of hepatocellular carcinoma (HCC). Based on gadolinium-ethoxybenzyl-diethylenetriamine pentaacetic acid (Gd-EOB-DTPA)-enhanced magnetic resonance ...

LI-RADS-based hepatocellular carcinoma risk mapping using contrast-enhanced MRI and self-configuring deep learning.

Cancer imaging : the official publication of the International Cancer Imaging Society
BACKGROUND: Hepatocellular carcinoma (HCC) is often diagnosed using gadoxetate disodium-enhanced magnetic resonance imaging (EOB-MRI). Standardized reporting according to the Liver Imaging Reporting and Data System (LI-RADS) can improve Gd-MRI interp...

High-precision MRI of liver and hepatic lesions on gadoxetic acid-enhanced hepatobiliary phase using a deep learning technique.

Japanese journal of radiology
PURPOSE: The purpose of this study was to investigate whether the high-precision magnetic resonance (MR) sequence using modified Fast 3D mode wheel and Precise IQ Engine (PIQE), that was collected in a wheel shape with sequential data filling in the ...

Effectiveness of deep learning-based reconstruction for improvement of image quality and liver tumor detectability in the hepatobiliary phase of gadoxetic acid-enhanced magnetic resonance imaging.

Abdominal radiology (New York)
PURPOSE: To evaluate the effectiveness of deep learning-based reconstruction (DLR) in improving image quality and tumor detectability of isovoxel high-resolution breath-hold fat-suppressed T1-weighted imaging (HR-BH-FS-T1WI) in the hepatobiliary phas...

Deep learning-based compressed SENSE improved diffusion-weighted image quality and liver cancer detection: A prospective study.

Magnetic resonance imaging
PURPOSE: To assess whether diffusion-weighted imaging (DWI) with Compressed SENSE (CS) and deep learning (DL-CS-DWI) can improve image quality and lesion detection in patients at risk for hepatocellular carcinoma (HCC).

Deep learning-based image reconstruction for the multi-arterial phase images: improvement of the image quality to assess the small hypervascular hepatic tumor on gadoxetic acid-enhanced liver MRI.

Abdominal radiology (New York)
PURPOSE: To evaluated the impact of a deep learning (DL)-based image reconstruction on multi-arterial-phase magnetic resonance imaging (MA-MRI) for small hypervascular hepatic masses in patients who underwent gadoxetic acid-enhanced liver MRI.

Enhancing gadoxetic acid-enhanced liver MRI: a synergistic approach with deep learning CAIPIRINHA-VIBE and optimized fat suppression techniques.

European radiology
OBJECTIVE: To investigate whether a deep learning (DL) controlled aliasing in parallel imaging results in higher acceleration (CAIPIRINHA)-volumetric interpolated breath-hold examination (VIBE) technique can improve image quality, lesion conspicuity,...

Application of a deep learning algorithm for three-dimensional T1-weighted gradient-echo imaging of gadoxetic acid-enhanced MRI in patients at a high risk of hepatocellular carcinoma.

Abdominal radiology (New York)
PURPOSE: To evaluate the efficacy of a vendor-specific deep learning reconstruction algorithm (DLRA) in enhancing image quality and focal lesion detection using three-dimensional T1-weighted gradient-echo images in gadoxetic acid-enhanced liver magne...