AIMC Topic: Antineoplastic Agents

Clear Filters Showing 71 to 80 of 491 articles

Discovery of anticancer peptides from natural and generated sequences using deep learning.

International journal of biological macromolecules
Anticancer peptides (ACPs) demonstrate significant potential in clinical cancer treatment due to their ability to selectively target and kill cancer cells. In recent years, numerous artificial intelligence (AI) algorithms have been developed. However...

Novel artificial intelligence-based identification of drug-gene-disease interaction using protein-protein interaction.

BMC bioinformatics
The evaluation of drug-gene-disease interactions is key for the identification of drugs effective against disease. However, at present, drugs that are effective against genes that are critical for disease are difficult to identify. Following a diseas...

Novel machine learning model for predicting cancer drugs' susceptibilities and discovering novel treatments.

Journal of biomedical informatics
BACKGROUND AND OBJECTIVE: Timely treatment is crucial for cancer patients, so it's important to administer the appropriate treatment as soon as possible. Because individuals can respond differently to a given drug due to their unique genomic profiles...

SAGCN: Using Graph Convolutional Network With Subgraph-Aware for circRNA-Drug Sensitivity Identification.

IEEE/ACM transactions on computational biology and bioinformatics
Circular RNAs (circRNAs) play a significant role in cancer development and therapy resistance. There is substantial evidence indicating that the expression of circRNAs affects the sensitivity of cells to drugs. Identifying circRNAs-drug sensitivity a...

Machine learning-aided discovery of T790M-mutant EGFR inhibitor CDDO-Me effectively suppresses non-small cell lung cancer growth.

Cell communication and signaling : CCS
BACKGROUND: Epidermal growth factor receptor (EGFR) T790M mutation often occurs during long durational erlotinib treatment of non-small cell lung cancer (NSCLC) patients, leading to drug resistance and disease progression. Identification of new selec...

Ultradense Electrochemical Chip and Machine Learning for High-Throughput, Accurate Anticancer Drug Screening.

ACS sensors
Despite the potentialities of electrochemical sensors, these devices still encounter challenges in devising high-throughput and accurate drug susceptibility testing. The lack of platforms for providing these analyses over the preclinical trials of dr...

Integrated multi-omics and machine learning reveal a gefitinib resistance signature for prognosis and treatment response in lung adenocarcinoma.

IUBMB life
Gefitinib resistance (GR) presents a significant challenge in treating lung adenocarcinoma (LUAD), highlighting the need for alternative therapies. This study explores the genetic basis of GR to improve prediction, prevention, and treatment strategie...

CMINNs: Compartment model informed neural networks - Unlocking drug dynamics.

Computers in biology and medicine
In the field of pharmacokinetics and pharmacodynamics (PKPD) modeling, which plays a pivotal role in the drug development process, traditional models frequently encounter difficulties in fully encapsulating the complexities of drug absorption, distri...

A deep learning model based on the BERT pre-trained model to predict the antiproliferative activity of anti-cancer chemical compounds.

SAR and QSAR in environmental research
Identifying new compounds with minimal side effects to enhance patients' quality of life is the ultimate goal of drug discovery. Due to the expensive and time-consuming nature of experimental investigations and the scarcity of data in traditional QSA...

Targeted isolation and AI-based analysis of edible fungal polysaccharides: Emphasizing tumor immunological mechanisms and future prospects as mycomedicines.

International journal of biological macromolecules
Edible fungal polysaccharides have emerged as significant bioactive compounds with diverse therapeutic potentials, including notable anti-tumor effects. Derived from various fungal sources, these polysaccharides exhibit complex biological activities ...