Journal of endovascular therapy : an official journal of the International Society of Endovascular Specialists
36927177
PURPOSE: This study aimed to develop a deep learning model for predicting distal aortic remodeling after proximal thoracic endovascular aortic repair (TEVAR) in patients with Stanford type B aortic dissection (TBAD) using computed tomography angiogra...
BACKGROUND: Guidelines recommend that aortic dimension measurements in aortic dissection should include the aortic wall. This study aimed to evaluate two-dimensional (2D)- and three-dimensional (3D)-based deep learning approaches for extraction of ou...
Type B aortic dissection is a life-threatening medical emergency that can result in rupture of the aorta. Due to the complexity of patient-specific characteristics, only limited information on flow patterns in dissected aortas has been reported in th...
Type-b aortic dissection (AD) is a life-threatening cardiovascular disease and the primary treatment is thoracic endovascular aortic repair (TEVAR). Due to the lack of a rapid and accurate segmentation technique, the patient-specific postoperative AD...
BACKGROUND: Aortic dissection (AD) is frequently associated with abnormalities in electrocardiographic findings. Advancements in medical technology present an opportunity to leverage these observations to improve patient diagnosis and care.
PURPOSE: This study aimed to construct a predictive model integrating deep learning-derived radiomic features from computed tomography angiography (CTA) and clinical biomarkers to forecast postoperative adverse events (AEs) in patients with acute unc...
Journal of imaging informatics in medicine
38864947
Life-threatening acute aortic dissection (AD) demands timely diagnosis for effective intervention. To streamline intrahospital workflows, automated detection of AD in abdominal computed tomography (CT) scans seems useful to assist humans. We aimed at...
BACKGROUND: Machine learning techniques have shown excellent performance in three-dimensional medical image analysis, but have not been applied to acute uncomplicated type B aortic dissection (auTBAD) using Society for Vascular Surgery (SVS) and Soci...
OBJECTIVE: Aortic dissection remains a life-threatening condition necessitating accurate diagnosis and timely intervention. This study aimed to investigate phenotypic heterogeneity in patients with Stanford type B aortic dissection (TBAD) through mac...
The Journal of thoracic and cardiovascular surgery
39303944
OBJECTIVE: The study objective was to develop and validate an interpretable machine learning model to predict 1-year mortality in patients with type A aortic dissection, improving risk classification and aiding clinical decision-making.