AIMC Topic: Autoencoder

Clear Filters Showing 1 to 10 of 44 articles

LSTM autoencoder based parallel architecture for deepfake audio detection with dynamic residual encoding and feature fusion.

Scientific reports
With the rapid advancement of synthetic speech technologies, detecting deepfake audio has become essential for preventing impersonation and misinformation. This study aims to enhance detection performance by addressing limitations in existing models,...

Noise-Consistent Hypergraph Autoencoder Based on Contrastive Learning for Cancer ceRNA Association Prediction in Complex Biological Regulatory Networks.

Journal of chemical information and modeling
Competitive endogenous RNA (ceRNA) regulatory networks (CENA) have advanced our understanding of noncoding RNAs' roles in complex diseases, providing a theoretical basis for disease mechanisms. Existing ceRNA-disease association prediction methods ar...

Relapse prediction using wearable data through convolutional autoencoders and clustering for patients with psychotic disorders.

Scientific reports
Relapse of psychotic disorders occurs commonly even after appropriate treatment. Digital phenotyping becomes essential to achieve remote monitoring for mental conditions. We applied a personalized approach using neural-network-based anomaly detection...

scE2EGAE: enhancing single-cell RNA-Seq data analysis through an end-to-end cell-graph-learnable graph autoencoder with differentiable edge sampling.

Biology direct
BACKGROUND: Single-cell RNA sequencing (scRNA-Seq) technology reveals biological processes and molecular-level genomic information among individual cells. Numerous computational methods, including methods based on graph neural networks (GNNs), have b...

Efficient few-shot medical image segmentation via self-supervised variational autoencoder.

Medical image analysis
Few-shot medical image segmentation typically uses a joint model for registration and segmentation. The registration model aligns a labeled atlas with unlabeled images to form initial masks, which are then refined by the segmentation model. However, ...

Synthetic Lung Ultrasound Data Generation Using Autoencoder With Generative Adversarial Network.

IEEE transactions on ultrasonics, ferroelectrics, and frequency control
Class imbalance is a significant challenge in medical image analysis, particularly in lung ultrasound (LUS), where severe patterns are often underrepresented. Traditional oversampling techniques, which simply duplicate original data, have limited eff...

Latent space autoencoder generative adversarial model for retinal image synthesis and vessel segmentation.

BMC medical imaging
Diabetes is a widespread condition that can lead to serious vision problems over time. Timely identification and treatment of diabetic retinopathy (DR) depend on accurately segmenting retinal vessels, which can be achieved through the invasive techni...

Design of diverse, functional mitochondrial targeting sequences across eukaryotic organisms using variational autoencoder.

Nature communications
Mitochondria play a key role in energy production and metabolism, making them a promising target for metabolic engineering and disease treatment. However, despite the known influence of passenger proteins on localization efficiency, only a few protei...

Topology-Guided Graph Masked Autoencoder Learning for Population-Based Neurodevelopmental Disorder Diagnosis.

IEEE transactions on neural systems and rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society
Exploring the pathogenic mechanisms of brain disorders within population is an important research in the field of neuroscience. Existing methods either combine clinical information to assist analysis or use data augmentation for sample expansion, ign...

ConnectomeAE: Multimodal brain connectome-based dual-branch autoencoder and its application in the diagnosis of brain diseases.

Computer methods and programs in biomedicine
BACKGROUND AND OBJECTIVE: Exploring the dependencies between multimodal brain networks and integrating node features to enhance brain disease diagnosis remains a significant challenge. Some work has examined only brain connectivity changes in patient...