AIMC Topic: Binding Sites

Clear Filters Showing 451 to 460 of 500 articles

RNAProt: an efficient and feature-rich RNA binding protein binding site predictor.

GigaScience
BACKGROUND: Cross-linking and immunoprecipitation followed by next-generation sequencing (CLIP-seq) is the state-of-the-art technique used to experimentally determine transcriptome-wide binding sites of RNA-binding proteins (RBPs). However, it relies...

dSPRINT: predicting DNA, RNA, ion, peptide and small molecule interaction sites within protein domains.

Nucleic acids research
Domains are instrumental in facilitating protein interactions with DNA, RNA, small molecules, ions and peptides. Identifying ligand-binding domains within sequences is a critical step in protein function annotation, and the ligand-binding properties ...

GraphBind: protein structural context embedded rules learned by hierarchical graph neural networks for recognizing nucleic-acid-binding residues.

Nucleic acids research
Knowledge of the interactions between proteins and nucleic acids is the basis of understanding various biological activities and designing new drugs. How to accurately identify the nucleic-acid-binding residues remains a challenging task. In this pap...

Computational Ion Channel Research: from the Application of Artificial Intelligence to Molecular Dynamics Simulations.

Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology
Although ion channels are crucial in many physiological processes and constitute an important class of drug targets, much is still unclear about their function and possible malfunctions that lead to diseases. In recent years, computational methods ha...

A machine learning-based framework for modeling transcription elongation.

Proceedings of the National Academy of Sciences of the United States of America
RNA polymerase II (Pol II) generally pauses at certain positions along gene bodies, thereby interrupting the transcription elongation process, which is often coupled with various important biological functions, such as precursor mRNA splicing and gen...

Application and assessment of deep learning for the generation of potential NMDA receptor antagonists.

Physical chemistry chemical physics : PCCP
Uncompetitive antagonists of the N-methyl d-aspartate receptor (NMDAR) have demonstrated therapeutic benefit in the treatment of neurological diseases such as Parkinson's and Alzheimer's, but some also cause dissociative effects that have led to the ...

Bionoi: A Voronoi Diagram-Based Representation of Ligand-Binding Sites in Proteins for Machine Learning Applications.

Methods in molecular biology (Clifton, N.J.)
Bionoi is a new software to generate Voronoi representations of ligand-binding sites in proteins for machine learning applications. Unlike many other deep learning models in biomedicine, Bionoi utilizes off-the-shelf convolutional neural network arch...

DeepCLIP: predicting the effect of mutations on protein-RNA binding with deep learning.

Nucleic acids research
Nucleotide variants can cause functional changes by altering protein-RNA binding in various ways that are not easy to predict. This can affect processes such as splicing, nuclear shuttling, and stability of the transcript. Therefore, correct modeling...

Protein-ligand binding residue prediction enhancement through hybrid deep heterogeneous learning of sequence and structure data.

Bioinformatics (Oxford, England)
MOTIVATION: Knowledge of protein-ligand binding residues is important for understanding the functions of proteins and their interaction mechanisms. From experimentally solved protein structures, how to accurately identify its potential binding sites ...