AIMC Topic: Breast

Clear Filters Showing 51 to 60 of 594 articles

Clinical feasibility of a deep learning approach for conventional and synthetic diffusion-weighted imaging in breast cancer: Qualitative and quantitative analyses.

European journal of radiology
PURPOSE: In this study, we aimed to investigate the clinical feasibility of deep learning (DL)-based reconstruction applied to conventional diffusion-weighted imaging (cDWI) and synthetic diffusion-weighted imaging (sDWI) by comparing the DL reconstr...

Investigating the Use of Traveltime and Reflection Tomography for Deep Learning-Based Sound-Speed Estimation in Ultrasound Computed Tomography.

IEEE transactions on ultrasonics, ferroelectrics, and frequency control
Ultrasound computed tomography (USCT) quantifies acoustic tissue properties such as the speed-of-sound (SOS). Although full-waveform inversion (FWI) is an effective method for accurate SOS reconstruction, it can be computationally challenging for lar...

The Value of Whole-Volume Radiomics Machine Learning Model Based on Multiparametric MRI in Predicting Triple-Negative Breast Cancer.

Journal of computer assisted tomography
OBJECTIVE: This study aimed to investigate the value of radiomics analysis in the precise diagnosis of triple-negative breast cancer (TNBC) based on breast dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) and apparent diffusion coeffici...

Enhanced breast mass segmentation in mammograms using a hybrid transformer UNet model.

Computers in biology and medicine
Breast mass segmentation plays a crucial role in early breast cancer detection and diagnosis, and while Convolutional Neural Networks (CNN) have been widely used for this task, their reliance on local receptive fields limits ability to capture long-r...

Early and noninvasive prediction of response to neoadjuvant therapy for breast cancer via longitudinal ultrasound and MR deep learning: A multicentre study.

Academic radiology
RATIONALE AND OBJECTIVES: The early prediction of response to neoadjuvant chemotherapy (NAC) will aid in the development of personalized treatments for patients with breast cancer. This study investigated the value of longitudinal multimodal deep lea...

Segmentation of breast lesion using fuzzy thresholding and deep learning.

Computers in biology and medicine
Breast cancer is a major cause of morbidity and mortality in women. In breast cancer screening, Dynamic Contrast Enhanced Magnetic Resonance Imaging (DCE-MRI) has shown promise as a technique, providing enhanced temporal patterns of breast tissues. T...

Detection of breast cancer using machine learning on time-series diffuse optical transillumination data.

Journal of biomedical optics
SIGNIFICANCE: Optical mammography as a promising tool for cancer diagnosis has largely fallen behind expectations. Modern machine learning (ML) methods offer ways to improve cancer detection in diffuse optical transmission data.

ACL-DUNet: A tumor segmentation method based on multiple attention and densely connected breast ultrasound images.

PloS one
Breast cancer is the most common cancer in women. Breast masses are one of the distinctive signs for diagnosing breast cancer, and ultrasound is widely used for screening as a non-invasive and effective method for breast examination. In this study, w...