AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Chromosome Mapping

Showing 11 to 20 of 34 articles

Clear Filters

AIKYATAN: mapping distal regulatory elements using convolutional learning on GPU.

BMC bioinformatics
BACKGROUND: The data deluge can leverage sophisticated ML techniques for functionally annotating the regulatory non-coding genome. The challenge lies in selecting the appropriate classifier for the specific functional annotation problem, within the b...

VAMPr: VAriant Mapping and Prediction of antibiotic resistance via explainable features and machine learning.

PLoS computational biology
Antimicrobial resistance (AMR) is an increasing threat to public health. Current methods of determining AMR rely on inefficient phenotypic approaches, and there remains incomplete understanding of AMR mechanisms for many pathogen-antimicrobial combin...

Statistical and Machine Learning Methods for eQTL Analysis.

Methods in molecular biology (Clifton, N.J.)
An immense amount of observable diversity exists for all traits and across global populations. In the post-genomic era, equipped with efficient sequencing capabilities and better genotyping methods, we are now able to more fully appreciate how regula...

Identifying barley pan-genome sequence anchors using genetic mapping and machine learning.

TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik
We identified 1.844 million barley pan-genome sequence anchors from 12,306 genotypes using genetic mapping and machine learning. There is increasing evidence that genes from a given crop genotype are far to cover all genes in that species; thus, buil...

How Machine Learning Methods Helped Find Putative Rye Wax Genes Among GBS Data.

International journal of molecular sciences
The standard approach to genetic mapping was supplemented by machine learning (ML) to establish the location of the rye gene associated with epicuticular wax formation (glaucous phenotype). Over 180 plants of the biparental F population were genotype...

Machine learning approaches reveal genomic regions associated with sugarcane brown rust resistance.

Scientific reports
Sugarcane is an economically important crop, but its genomic complexity has hindered advances in molecular approaches for genetic breeding. New cultivars are released based on the identification of interesting traits, and for sugarcane, brown rust re...

UniRule: a unified rule resource for automatic annotation in the UniProt Knowledgebase.

Bioinformatics (Oxford, England)
MOTIVATION: The number of protein records in the UniProt Knowledgebase (UniProtKB: https://www.uniprot.org) continues to grow rapidly as a result of genome sequencing and the prediction of protein-coding genes. Providing functional annotation for the...

Machine Learning Identifies Complicated Sepsis Course and Subsequent Mortality Based on 20 Genes in Peripheral Blood Immune Cells at 24 H Post-ICU Admission.

Frontiers in immunology
A complicated clinical course for critically ill patients admitted to the intensive care unit (ICU) usually includes multiorgan dysfunction and subsequent death. Owing to the heterogeneity, complexity, and unpredictability of the disease progression,...

CBCR: A Curriculum Based Strategy For Chromosome Reconstruction.

International journal of molecular sciences
In this paper, we introduce a novel algorithm that aims to estimate chromosomes' structure from their Hi-C contact data, called Curriculum Based Chromosome Reconstruction (CBCR). Specifically, our method performs this three dimensional reconstruction...

Leveraging supervised learning for functionally informed fine-mapping of cis-eQTLs identifies an additional 20,913 putative causal eQTLs.

Nature communications
The large majority of variants identified by GWAS are non-coding, motivating detailed characterization of the function of non-coding variants. Experimental methods to assess variants' effect on gene expressions in native chromatin context via direct ...