AIMC Topic: Decision Trees

Clear Filters Showing 1 to 10 of 547 articles

Improved bio-inspired with machine learning computing approach for thyroid prediction.

Scientific reports
Thyroid illness is widely recognised as a prevalent health condition that can result in a range of health disorders. Thyroid illnesses, namely hypothyroidism and hyperthyroidism, are widespread worldwide and present considerable health consequences. ...

GAINSeq: glaucoma pre-symptomatic detection using machine learning models driven by next-generation sequencing data.

Scientific reports
Congenital glaucoma, a complex and diverse condition, presents considerable difficulties in its identification and categorization. This research used Next Generation Sequencing (NGS) whole-exome data to create a categorization framework using machine...

Prediction of cardiovascular diseases based on GBDT+LR.

Scientific reports
Currently, there are over 300 million patients with cardiovascular diseases in China. With the acceleration of population aging, the impact of cardiovascular diseases is becoming increasingly severe. Accurately and efficiently predicting the potentia...

Comparative investigation of bagging enhanced machine learning for early detection of HCV infections using class imbalance technique with feature selection.

PloS one
Around 1.5 million new cases of Hepatitis C Virus (HCV) are diagnosed globally each year (World Health Organization, 2023). Consequently, there is a pressing need for early diagnostic methods for HCV. This study investigates the prognostic accuracy o...

The utility of an artificial intelligence model based on decision tree and evolution algorithm to evaluate steatotic liver disease in a primary care setting.

Brazilian journal of medical and biological research = Revista brasileira de pesquisas medicas e biologicas
Many ways of classifying steatotic liver disease (SLD) with metabolic conditions have been proposed. Thus, SLD-related variables were verified using a decision tree. We tested if the suggested components of the actual classification (metabolic dysfun...

Predicting Coronary Heart Disease Using Data Mining and Machine Learning Solutions.

Anais da Academia Brasileira de Ciencias
This research focuses on predicting cardiovascular disease using machine learning classification strategies. The study presents a unique approach by integrating multiple machine learning techniques, leveraging the strengths of Random Forest and Gradi...

A machine learning-based prediction model for sepsis-associated delirium in intensive care unit patients with sepsis-associated acute kidney injury.

Renal failure
Sepsis-associated acute kidney injury (SA-AKI) patients in the ICU often suffer from sepsis-associated delirium (SAD), which is linked to unfavorable outcomes. This research aimed to develop a machine learning-based model for early SAD prediction in ...

Data-driven diabetes mellitus prediction and management: a comparative evaluation of decision tree classifier and artificial neural network models along with statistical analysis.

Scientific reports
Diabetes Mellitus is a chronic metabolic disorder affecting a substantial global population leading to complications such as retinopathy, nephropathy, neuropathy, foot problems, heart attacks, and strokes if left unchecked. Prompt detection and diagn...

Methodological Review of Classification Trees for Risk Stratification: An Application Example in the Obesity Paradox.

Nutrients
BACKGROUND: Classification trees (CTs) are widely used machine learning algorithms with growing applications in clinical research, especially for risk stratification. Their ability to generate interpretable decision rules makes them attractive to hea...

Classification of biomedical lung cancer images using optimized binary bat technique by constructing oblique decision trees.

Scientific reports
Due to imbalanced data values and high-dimensional features of lung cancer from CT scans images creates significant challenges in clinical research. The improper classification of these images leads towards higher complexity in classification process...