AIMC Topic: Decision Trees

Clear Filters Showing 11 to 20 of 547 articles

MultiOmicsAgent: Guided Extreme Gradient-Boosted Decision Trees-Based Approaches for Biomarker-Candidate Discovery in Multiomics Data.

Journal of proteome research
MultiOmicsAgent (MOAgent) is an innovative, Python-based open-source tool for biomarker discovery, utilizing machine learning techniques, specifically extreme gradient-boosted decision trees, to process multiomics data. With its cross-platform compat...

Predicting and Evaluating Cognitive Status in Aging Populations Using Decision Tree Models.

American journal of Alzheimer's disease and other dementias
To improve the identification of cognitive impairment by distinguishing normal cognition (NC), mild cognitive impairment (MCI), and Alzheimer's disease (AD). A recursive partitioning tree model was developed using ARMADA data and the NIH Toolbox, a...

The data analysis of sports training by ID3 decision tree algorithm and deep learning.

Scientific reports
In order to improve the accuracy and efficiency of sports training data analysis, this paper proposes an optimized analysis model by combining Iterative Dichotomiser 3 (ID3) decision tree algorithm and deep learning model. As an important scientific ...

Optimizing machine learning models for predicting anemia among under-five children in Ethiopia: insights from Ethiopian demographic and health survey data.

BMC pediatrics
BACKGROUND: Healthcare practitioners require a robust predictive system to accurately diagnose diseases, especially in young children with conditions such as anemia. Delays in diagnosis and treatment can have severe consequences, potentially leading ...

A retrospective study using machine learning to develop predictive model to identify rotavirus-associated acute gastroenteritis in children.

PeerJ
BACKGROUND: Rotavirus is the leading cause of severe dehydrating diarrhea in children under 5 years worldwide. Timely diagnosis is critical, but access to confirmatory testing is limited in hospital settings. Machine learning (ML) models have shown p...

Optimized classification of dental implants using convolutional neural networks and pre-trained models with preprocessed data.

BMC oral health
OBJECTIVE: This study evaluates the performance of various classifiers and pre-trained models for dental implant state classification using preprocessed radiography images with masks.

DTreePred: an online viewer based on machine learning for pathogenicity prediction of genomic variants.

BMC bioinformatics
BACKGROUND: A significant challenge in precision medicine is confidently identifying mutations detected in sequencing processes that play roles in disease treatment or diagnosis. Furthermore, the lack of representativeness of single nucleotide varian...

Predicting and investigating water quality index by robust machine learning methods.

Journal of environmental management
This study addresses the critical challenges of waste management and water quality in urban environments, where accelerated urbanization has exacerbated environmental degradation and public health risks. Employing advanced machine learning algorithms...

Enlightened prognosis: Hepatitis prediction with an explainable machine learning approach.

PloS one
Hepatitis is a widespread inflammatory condition of the liver, presenting a formidable global health challenge. Accurate and timely detection of hepatitis is crucial for effective patient management, yet existing methods exhibit limitations that unde...

Evaluating how different balancing data techniques impact on prediction of premature birth using machine learning models.

PloS one
Premature birth can be defined as birth before 37 weeks of gestation, which is a significant global health issue, being the main cause for neonatal deaths. In this work, we evaluate machine learning models for predicting premature birth using Brazili...