Diabetic retinopathy (DR) is one of the leading causes of vision loss in adults and is one of the detrimental side effects of the mass prevalence of Diabetes Mellitus (DM). It is crucial to have an efficient screening method for early diagnosis of DR...
INTRODUCTION: The aim of this study was to compare various machine learning algorithms for constructing a diabetic retinopathy (DR) prediction model among type 2 diabetes mellitus (DM) patients and to develop a nomogram based on the best model.
IMPORTANCE: Safe integration of artificial intelligence (AI) into clinical settings often requires randomized clinical trials (RCT) to compare AI efficacy with conventional care. Diabetic retinopathy (DR) screening is at the forefront of clinical AI ...
Diabetic Retinopathy (DR) and Diabetic Macular Edema (DME) are vision related complications prominently found in diabetic patients. The early identification of DR/DME grades facilitates the devising of an appropriate treatment plan, which ultimately ...
Age-related macular degeneration (AMD) and diabetic macular edema (DME) are significant causes of blindness worldwide. The prevalence of these diseases is steadily increasing due to population aging. Therefore, early diagnosis and prevention are cruc...
BACKGROUND: For medical artificial intelligence (AI) training and validation, human expert labels are considered the gold standard that represents the correct answers or desired outputs for a given data set. These labels serve as a reference or bench...
Disruption of retinal vasculature is linked to various diseases, including diabetic retinopathy and macular degeneration, leading to vision loss. We present here a novel algorithmic approach that generates highly realistic digital models of human ret...
BACKGROUND: Cardiac autonomic neuropathy (CAN) in diabetes mellitus (DM) is independently associated with cardiovascular (CV) events and CV death. Diagnosis of this complication of DM is time-consuming and not routinely performed in the clinical prac...
PURPOSE: Screening for diabetic retinopathy (DR) by ophthalmologists is costly and labour-intensive. Artificial Intelligence (AI) for automated DR detection could be a clinically and economically alternative. We assessed the performance of a confocal...
Several studies published so far used highly selective image datasets from unclear sources to train computer vision models and that may lead to overestimated results, while those studies conducted in real-life remain scarce. To avoid image selection ...