Every year biotechnology labs generate a combined total of ∼5.5 million tons of plastic waste. As the global bioeconomy expands, biofoundries will inevitably increase plastic consumption in-step with synthetic biology scaling. Decontamination and reu...
International journal of molecular sciences
Jul 27, 2023
Utilizing large-scale epigenomics data, deep learning tools can predict the regulatory activity of genomic sequences, annotate non-coding genetic variants, and uncover mechanisms behind complex traits. However, these tools primarily rely on human or ...
The Ames test is a gold standard mutagenicity assay that utilizes various strains with and without S9 fraction to provide insights into the mechanisms by which a chemical can mutate DNA. Multitask deep learning is an ideal framework for developing Q...
DNA origami purification is essential for many fields, including biophysics, molecular engineering, and therapeutics. The increasing interest in DNA origami has led to the development of rate-zonal centrifugation (RZC) as a scalable, high yield, and ...
In recent years, research in the field of bioinformatics has focused on predicting the raw sequences of proteins, and some scholars consider DNA-binding protein prediction as a classification task. Many statistical and machine learning-based methods ...
Integrating rationally designed DNA molecular walkers and DNA origami platforms is a promising route towards advanced nano-robotics of diverse functions. Unleashing the full potential in this direction requires DNA walker-origami systems beyond the p...
Methylation is a major DNA epigenetic modification for regulating the biological processes without altering the DNA sequence, and multiple types of DNA methylations have been discovered, including 6mA, 5hmC, and 4mC. Multiple computational approaches...
The power of natural evolution lies in the adaptability of biological organisms but is constrained by the time scale of genetics and reproduction. Engineeringartificial molecular machines should not only include adaptability as a core feature but als...
Transcription factors (TF) recognize specific motifs in the genome that are typically 6-12 bp long to regulate various aspects of the cellular machinery. Presence of binding motifs and favorable genome accessibility are key drivers for a consistent T...