BACKGROUND: The importance of identifying and evaluating adverse drug reactions (ADRs) has been widely recognized. Many studies have developed algorithms for ADR signal detection using electronic health record (EHR) data. In this study, we propose a ...
AIMS: We propose a novel machine learning approach to expand the knowledge about drug-target interactions. Our method may help to develop effective, less harmful treatment strategies and to enable the detection of novel indications for existing drugs...
The process of discovering novel drugs to treat diseases requires a long time and high cost. It is important to understand side effects of drugs as well as their therapeutic effects, because these can seriously damage the patients due to unexpected a...
Digoxin is a high-alert medication because of its narrow therapeutic range and high drug-to-drug interactions (DDIs). Approximately 50% of digoxin toxicity cases are preventable, which motivated us to improve the treatment outcomes of digoxin. The ob...
Journal of chemical information and modeling
Aug 15, 2018
The majority of computational methods for predicting toxicity of chemicals are typically based on "nonmechanistic" cheminformatics solutions, relying on an arsenal of QSAR descriptors, often vaguely associated with chemical structures, and typically ...
Drug safety, also called pharmacovigilance, represents a serious health problem all over the world. Adverse drug reactions (ADRs) and drug-drug interactions (DDIs) are two important issues in pharmacovigilance, and how to detect drug safety signals h...
IEEE journal of biomedical and health informatics
Jul 30, 2018
Text normalization into medical dictionaries is useful to support clinical tasks. A typical setting is pharmacovigilance (PV). The manual detection of suspected adverse drug reactions (ADRs) in narrative reports is time consuming and natural language...
The safety of medication use has been a priority in the United States since the late 1930s. Recently, it has gained prominence due to the increasing amount of data suggesting that a large amount of patient harm is preventable and can be mitigated wit...
MOTIVATION: Predicting Drug-Drug Interaction (DDI) has become a crucial step in the drug discovery and development process, owing to the rise in the number of drugs co-administered with other drugs. Consequently, the usage of computational methods fo...
BACKGROUND: Social media is a useful platform to share health-related information due to its vast reach. This makes it a good candidate for public-health monitoring tasks, specifically for pharmacovigilance. We study the problem of extraction of Adve...
Join thousands of healthcare professionals staying informed about the latest AI breakthroughs in medicine. Get curated insights delivered to your inbox.