AIMC Topic: Electrocardiography

Clear Filters Showing 61 to 70 of 1286 articles

The Evolving Paradigm of Myocardial Infarction in the Era of Artificial Intelligence.

British journal of hospital medicine (London, England : 2005)
The classification and treatment of myocardial infarction (MI) have evolved significantly over the past few decades, with the ST-segment elevation myocardial infarction (STEMI)/non-STEMI (NSTEMI) paradigm dominating clinical practice. While STEMI, id...

Deep learning and electrocardiography: systematic review of current techniques in cardiovascular disease diagnosis and management.

Biomedical engineering online
This paper reviews the recent advancements in the application of deep learning combined with electrocardiography (ECG) within the domain of cardiovascular diseases, systematically examining 198 high-quality publications. Through meticulous categoriza...

Utilizing 12-lead electrocardiogram and machine learning to retrospectively estimate and prospectively predict atrial fibrillation and stroke risk.

Computers in biology and medicine
BACKGROUND: The stroke risk in patients with subclinical atrial fibrillation (AF) is underestimated. By identifying patients at high risk of embolic stroke, health-care professionals can make more informed decisions regarding anticoagulation treatmen...

Explainable paroxysmal atrial fibrillation diagnosis using an artificial intelligence-enabled electrocardiogram.

The Korean journal of internal medicine
BACKGROUND/AIMS: Atrial fibrillation (AF) significantly contributes to global morbidity and mortality. Paroxysmal atrial fibrillation (PAF) is particularly common among patients with cryptogenic strokes or transient ischemic attacks and has a silent ...

EffNet: an efficient one-dimensional convolutional neural networks for efficient classification of long-term ECG fragments.

Biomedical physics & engineering express
Early Diagnosis of Cardiovascular disease (CVD) is essential to prevent a person from death in case of a cardiac arrhythmia. Automated ECG classification is required because manual classification by cardiologists is laborious, time-consuming, and pro...

Ventricular Arrhythmia Classification Using Similarity Maps and Hierarchical Multi-Stream Deep Learning.

IEEE transactions on bio-medical engineering
OBJECTIVE: Ventricular arrhythmias are the primary arrhythmias that cause sudden cardiac death. We address the problem of classification between ventricular tachycardia (VT), ventricular fibrillation (VF) and non-ventricular rhythms (NVR).

Electrocardiographic-Driven artificial intelligence Model: A new approach to predicting One-Year mortality in heart failure with reduced ejection fraction patients.

International journal of medical informatics
BACKGROUND: Despite the proliferation of heart failure (HF) mortality prediction models, their practical utility is limited. Addressing this, we utilized a significant dataset to develop and validate a deep learning artificial intelligence (AI) model...

Artificial Intelligence ECG Diastolic Dysfunction and Survival in Cardiac Intensive Care Unit Patients.

Journal of the American Heart Association
BACKGROUND: Left ventricular diastolic dysfunction (LVDD) predicts mortality in patients in cardiac intensive care units. An artificial intelligence enhanced ECG (AIECG) algorithm can predict LVDD and mortality in general populations but has not been...

Temporal and spatial self supervised learning methods for electrocardiograms.

Scientific reports
The limited availability of labeled ECG data restricts the application of supervised deep learning methods in ECG detection. Although existing self-supervised learning approaches have been applied to ECG analysis, they are predominantly image-based, ...

Artificial Intelligence Applications in Cardio-Oncology: A Comprehensive Review.

Current cardiology reports
PURPOSE OF REVIEW: This review explores the role of artificial intelligence (AI) in cardio-oncology, focusing on its latest application across problems in diagnosis, prognosis, risk stratification, and management of cardiovascular (CV) complications ...