AIMC Topic: Electrocardiography

Clear Filters Showing 71 to 80 of 1286 articles

Antifreezing Ultrathin Bioionic Gel-Based Wearable System for Artificial Intelligence-Assisted Arrhythmia Diagnosis in Hypothermia.

ACS nano
Cardiovascular disease (CAD) is a major global public health issue, with mortality rates being significantly impacted by cold temperatures. Stable and reliable electrocardiogram (ECG) monitoring in cold environments is crucial for early detection and...

Thermo-responsive and phase-separated hydrogels for cardiac arrhythmia diagnosis with deep learning algorithms.

Biosensors & bioelectronics
Adhesive epidermal hydrogel electrodes are essential for achieving robust signal transduction and cardiac arrhythmia diagnosis, but detachment of conventional adhesive dressings easily causes secondary damage to delicate wound tissues due to lack of ...

Transformer-based heart language model with electrocardiogram annotations.

Scientific reports
This paper explores the potential of transformer-based foundation models to detect Atrial Fibrillation (AFIB) in electrocardiogram (ECG) processing, an arrhythmia specified as an irregular heart rhythm without patterns. We construct a language with t...

An arrhythmia classification using a deep learning and optimisation-based methodology.

Journal of medical engineering & technology
The work proposes a methodology for five different classes of ECG signals. The methodology utilises moving average filter and discrete wavelet transformation for the remove of baseline wandering and powerline interference. The preprocessed signals ar...

A Multimodal Deep Learning Approach to Intraoperative Nociception Monitoring: Integrating Electroencephalogram, Photoplethysmography, and Electrocardiogram.

Sensors (Basel, Switzerland)
Monitoring nociception under general anesthesia remains challenging due to the complexity of pain pathways and the limitations of single-parameter methods. In this study, we introduce a multimodal approach that integrates electroencephalogram (EEG), ...

Deep CNN-based detection of cardiac rhythm disorders using PPG signals from wearable devices.

PloS one
Cardiac rhythm disorders can manifest in various ways, such as the heart rate being too fast (tachycardia) or too slow (bradycardia), irregular heartbeats (like atrial fibrillation-AF, ventricular fibrillation-VF), or the initiation of heartbeats in ...

Deep attention model for arrhythmia signal classification based on multi-objective crayfish optimization algorithmic variational mode decomposition.

Scientific reports
The detection and classification of arrhythmia play a vital role in the diagnosis and management of cardiac disorders. Many deep learning techniques are utilized for arrhythmia classification in current research but only based on ECG data, lacking th...

AI Accelerator With Ultralightweight Time-Period CNN-Based Model for Arrhythmia Classification.

IEEE transactions on biomedical circuits and systems
This work proposes a classification system for arrhythmias, aiming to enhance the efficiency of the diagnostic process for cardiologists. The proposed algorithm includes a naive preprocessing procedure for electrocardiography (ECG) data applicable to...

Towards Hardware Supported Domain Generalization in DNN-Based Edge Computing Devices for Health Monitoring.

IEEE transactions on biomedical circuits and systems
Deep neural network (DNN) models have shown remarkable success in many real-world scenarios, such as object detection and classification. Unfortunately, these models are not yet widely adopted in health monitoring due to exceptionally high requiremen...

Comparing Phenotypes for Acute and Long-Term Response to Atrial Fibrillation Ablation Using Machine Learning.

Circulation. Arrhythmia and electrophysiology
BACKGROUND: It is difficult to identify patients with atrial fibrillation (AF) most likely to respond to ablation. While any arrhythmia patient may recur after acutely successful ablation, AF is unusual in that patients may have long-term arrhythmia ...