AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Evolution, Molecular

Showing 61 to 70 of 108 articles

Clear Filters

An Elite Gene Guided Reproduction Operator for Many-Objective Optimization.

IEEE transactions on cybernetics
Traditional reproduction operators in many-objective evolutionary algorithms (MaOEAs) seem to not be so effective to tackle many-objective optimization problems (MaOPs). This is mainly because the population size cannot be set to an arbitrarily large...

Accurate Identification of Antioxidant Proteins Based on a Combination of Machine Learning Techniques and Hidden Markov Model Profiles.

Computational and mathematical methods in medicine
Antioxidant proteins (AOPs) play important roles in the management and prevention of several human diseases due to their ability to neutralize excess free radicals. However, the identification of AOPs by using wet-lab experimental techniques is often...

Genes, the brain, and artificial intelligence in evolution.

Journal of human genetics
Three important systems, genes, the brain, and artificial intelligence (especially deep learning) have similar goals, namely, the maximization of likelihood or minimization of cross-entropy. Animal brains have evolved through predator-prey interactio...

Evolution of drug resistance in HIV protease.

BMC bioinformatics
BACKGROUND: Drug resistance is a critical problem limiting effective antiviral therapy for HIV/AIDS. Computational techniques for predicting drug resistance profiles from genomic data can accelerate the appropriate choice of therapy. These techniques...

Inter-protein residue covariation information unravels physically interacting protein dimers.

BMC bioinformatics
BACKGROUND: Predicting physical interaction between proteins is one of the greatest challenges in computational biology. There are considerable various protein interactions and a huge number of protein sequences and synthetic peptides with unknown in...

Deep learning suggests that gene expression is encoded in all parts of a co-evolving interacting gene regulatory structure.

Nature communications
Understanding the genetic regulatory code governing gene expression is an important challenge in molecular biology. However, how individual coding and non-coding regions of the gene regulatory structure interact and contribute to mRNA expression leve...

Evolutionary insights into the active-site structures of the metallo-β-lactamase superfamily from a classification study with support vector machine.

Journal of biological inorganic chemistry : JBIC : a publication of the Society of Biological Inorganic Chemistry
The metallo-β-lactamase (MβL) superfamily, which is intriguing due to its enzyme promiscuity, is a good model enzyme superfamily for studies of catalytic function evolution. Our previous study traced the evolution of the phosphotriesterase activity o...

Term Matrix: a novel Gene Ontology annotation quality control system based on ontology term co-annotation patterns.

Open biology
Biological processes are accomplished by the coordinated action of gene products. Gene products often participate in multiple processes, and can therefore be annotated to multiple Gene Ontology (GO) terms. Nevertheless, processes that are functionall...

A novel fusion based on the evolutionary features for protein fold recognition using support vector machines.

Scientific reports
Protein fold recognition plays a crucial role in discovering three-dimensional structure of proteins and protein functions. Several approaches have been employed for the prediction of protein folds. Some of these approaches are based on extracting fe...

Predicting the short-term success of human influenza virus variants with machine learning.

Proceedings. Biological sciences
Seasonal influenza viruses are constantly changing and produce a different set of circulating strains each season. Small genetic changes can accumulate over time and result in antigenically different viruses; this may prevent the body's immune system...