AIMC Topic: Influenza Vaccines

Clear Filters Showing 1 to 10 of 20 articles

Leveraging pre-vaccination antibody titres across multiple influenza H3N2 variants to forecast the post-vaccination response.

EBioMedicine
BACKGROUND: Despite decades of research on the influenza virus, we still lack a predictive understanding of how vaccination reshapes each person's antibody response, which impedes efforts to design better vaccines. Models using pre-vaccination antibo...

FluPMT: Prediction of Predominant Strains of Influenza A Viruses via Multi-Task Learning.

IEEE/ACM transactions on computational biology and bioinformatics
Seasonal influenza vaccines play a crucial role in saving numerous lives annually. However, the constant evolution of the influenza A virus necessitates frequent vaccine updates to ensure its ongoing effectiveness. The decision to develop a new vacci...

Development, study, and comparison of models of cross-immunity to the influenza virus using statistical methods and machine learning.

Voprosy virusologii
INTRODUCTION: The World Health Organization considers the values of antibody titers in the hemagglutination inhibition assay as one of the most important criteria for assessing successful vaccination. Mathematical modeling of cross-immunity allows fo...

Identification of gene and protein signatures associated with long-term effects of COVID-19 on the immune system after patient recovery by analyzing single-cell multi-omics data using a machine learning approach.

Vaccine
Viral infections significantly impact the immune system, and impact will persist until recovery. However, the influence of severe acute respiratory syndrome coronavirus 2 infection on the homeostatic immune status and secondary immune response in rec...

Seasonal antigenic prediction of influenza A H3N2 using machine learning.

Nature communications
Antigenic characterization of circulating influenza A virus (IAV) isolates is routinely assessed by using the hemagglutination inhibition (HI) assays for surveillance purposes. It is also used to determine the need for annual influenza vaccine update...

Comparative Study on the Efficacy of MF 59, ISA70 VG, and Nano-Aluminum Hydroxide Adjuvants, Alone and with Nano-Selenium on Humoral Immunity Induced by a Bivalent Newcastle+Avian Influenza Vaccine in Chickens.

Archives of Razi Institute
Newcastle disease (ND) and Avian influenza (AI) are the major problems and the most economically important viral diseases in the poultry industry; therefore, vaccination against these diseases is considered one of the most effective ways of preventio...

Machine learning models to identify low adherence to influenza vaccination among Korean adults with cardiovascular disease.

BMC cardiovascular disorders
BACKGROUND: Annual influenza vaccination is an important public health measure to prevent influenza infections and is strongly recommended for cardiovascular disease (CVD) patients, especially in the current coronavirus disease 2019 (COVID-19) pandem...

Predicting the short-term success of human influenza virus variants with machine learning.

Proceedings. Biological sciences
Seasonal influenza viruses are constantly changing and produce a different set of circulating strains each season. Small genetic changes can accumulate over time and result in antigenically different viruses; this may prevent the body's immune system...

The FluPRINT dataset, a multidimensional analysis of the influenza vaccine imprint on the immune system.

Scientific data
Machine learning has the potential to identify novel biological factors underlying successful antibody responses to influenza vaccines. The first attempts have revealed a high level of complexity in establishing influenza immunity, and many different...