AIMC Topic: Fundus Oculi

Clear Filters Showing 261 to 270 of 491 articles

Predicting Glaucoma Development With Longitudinal Deep Learning Predictions From Fundus Photographs.

American journal of ophthalmology
PURPOSE: To assess whether longitudinal changes in a deep learning algorithm's predictions of retinal nerve fiber layer (RNFL) thickness based on fundus photographs can predict future development of glaucomatous visual field defects.

Systematic Comparison of Heatmapping Techniques in Deep Learning in the Context of Diabetic Retinopathy Lesion Detection.

Translational vision science & technology
PURPOSE: Heatmapping techniques can support explainability of deep learning (DL) predictions in medical image analysis. However, individual techniques have been mainly applied in a descriptive way without an objective and systematic evaluation. We in...

Deep learning-based classification of retinal atrophy using fundus autofluorescence imaging.

Computers in biology and medicine
PURPOSE: To automatically classify retinal atrophy according to its etiology, using fundus autofluorescence (FAF) images, using a deep learning model.

Pathological myopia classification with simultaneous lesion segmentation using deep learning.

Computer methods and programs in biomedicine
BACKGROUND AND OBJECTIVES: Pathological myopia (PM) is the seventh leading cause of blindness, with a reported global prevalence up to 3%. Early and automated PM detection from fundus images could aid to prevent blindness in a world population that i...

Development of a deep learning-based image eligibility verification system for detecting and filtering out ineligible fundus images: A multicentre study.

International journal of medical informatics
BACKGROUND: Recent advances in artificial intelligence (AI) have shown great promise in detecting some diseases based on medical images. Most studies developed AI diagnostic systems only using eligible images. However, in real-world settings, ineligi...

A novel deep learning conditional generative adversarial network for producing angiography images from retinal fundus photographs.

Scientific reports
Fluorescein angiography (FA) is a procedure used to image the vascular structure of the retina and requires the insertion of an exogenous dye with potential adverse side effects. Currently, there is only one alternative non-invasive system based on O...

How to Extract More Information With Less Burden: Fundus Image Classification and Retinal Disease Localization With Ophthalmologist Intervention.

IEEE journal of biomedical and health informatics
Image classification using convolutional neural networks (CNNs) outperforms other state-of-the-art methods. Moreover, attention can be visualized as a heatmap to improve the explainability of results of a CNN. We designed a framework that can generat...

Hard Attention Net for Automatic Retinal Vessel Segmentation.

IEEE journal of biomedical and health informatics
Automated retinal vessel segmentation is among the most significant application and research topics in ophthalmologic image analysis. Deep learning based retinal vessel segmentation models have attracted much attention in the recent years. However, c...

Identifying Mouse Autoimmune Uveitis from Fundus Photographs Using Deep Learning.

Translational vision science & technology
PURPOSE: To develop a deep learning model for objective evaluation of experimental autoimmune uveitis (EAU), the animal model of posterior uveitis that reveals its essential pathological features via fundus photographs.