PURPOSE: To provide automatic detection of Type 1 retinopathy of prematurity (ROP), Type 2 ROP, and A-ROP by deep learning-based analysis of fundus images obtained by clinical examination using convolutional neural networks.
Fundus fluorescein angiography (FFA) examinations are widely used in the evaluation of fundus disease conditions to facilitate further treatment suggestions. Here, we present a protocol for performing deep learning-based FFA image analytics with clas...
SIGNIFICANCE: Retinopathy of prematurity (ROP) poses a significant global threat to childhood vision, necessitating effective screening strategies. This study addresses the impact of color channels in fundus imaging on ROP diagnosis, emphasizing the ...
Journal of imaging informatics in medicine
Jun 14, 2024
Retinal diseases stand as a primary cause of childhood blindness. Analyzing the progression of these diseases requires close attention to lesion morphology and spatial information. Standard image registration methods fail to accurately reconstruct pe...
Medical & biological engineering & computing
Jun 14, 2024
Retinal disorders are a major cause of irreversible vision loss, which can be mitigated through accurate and early diagnosis. Conventionally, fundus images are used as the gold diagnosis standard in detecting retinal diseases. In recent years, more a...
Image-based artificial intelligence (AI) systems stand as the major modality for evaluating ophthalmic conditions. However, most of the currently available AI systems are designed for experimental research using single-central datasets. Most of them ...
BACKGROUND: Diabetic retinopathy (DR) is a leading cause of blindness in adults worldwide. Artificial intelligence (AI) with autonomous deep learning algorithms has been increasingly used in retinal image analysis, particularly for the screening of r...
BACKGROUND: Diabetic retinopathy (DR) is a common complication of diabetes and may lead to irreversible visual loss. Efficient screening and improved treatment of both diabetes and DR have amended visual prognosis for DR. The number of patients with ...
BACKGROUND/OBJECTIVES: Artificial intelligence can assist with ocular image analysis for screening and diagnosis, but it is not yet capable of autonomous full-spectrum screening. Hypothetically, false-positive results may have unrealized screening po...
The non-perfusion area (NPA) of the retina is an important indicator in the visual prognosis of patients with branch retinal vein occlusion (BRVO). However, the current evaluation method of NPA, fluorescein angiography (FA), is invasive and burdensom...
Join thousands of healthcare professionals staying informed about the latest AI breakthroughs in medicine. Get curated insights delivered to your inbox.