AIMC Topic: Gestational Age

Clear Filters Showing 11 to 20 of 136 articles

Proposing a machine learning-based model for predicting nonreassuring fetal heart.

Scientific reports
The capacity to forecast nonreassuring fetal heart (NFH) is essential for minimizing perinatal complications; therefore, this research aims to establish if a machine learning (ML) model can predict NFH. This was a retrospective analysis of informatio...

Retinal Vascularization Rate Predicts Retinopathy of Prematurity and Remains Unaffected by Low-Dose Bevacizumab Treatment.

American journal of ophthalmology
PURPOSE: To assess the rate of retinal vascularization derived from ultra-widefield (UWF) imaging-based retinopathy of prematurity (ROP) screening as predictor of type 1 ROP and characterize the effect of anti-vascular endothelial growth factor (anti...

Machine learning approaches for predicting fetal macrosomia at different stages of pregnancy: a retrospective study in China.

BMC pregnancy and childbirth
BACKGROUND: Macrosomia presents significant risks to both maternal and neonatal health, however, accurate antenatal prediction remains a major challenge. This study aimed to develop machine learning approaches to enhance the prediction of fetal macro...

Longitudinal twin growth discordance patterns and adverse perinatal outcomes.

American journal of obstetrics and gynecology
BACKGROUND: Growth discordance in twin pregnancies is associated with increased perinatal morbidity and mortality, yet the patterns of discordance progression and the utility of Doppler assessments remain underinvestigated.

Predicting preterm birth using electronic medical records from multiple prenatal visits.

BMC pregnancy and childbirth
This study aimed to predict preterm birth in nulliparous women using machine learning and easily accessible variables from prenatal visits. Elastic net regularized logistic regression models were developed and evaluated using 5-fold cross-validation ...

Evaluation of Pregnancy Risks in Women with Subchorionic Hematoma Using Machine Learning Models.

Medical science monitor : international medical journal of experimental and clinical research
BACKGROUND Subchorionic hematoma (SCH) can lead to blood accumulation and potentially affect pregnancy outcomes. Despite being a relatively common finding in early pregnancy, the effects of SCH on pregnancy outcomes such as miscarriage, stillbirth, a...

Development of a machine learning model for prediction of intraventricular hemorrhage in premature neonates.

Child's nervous system : ChNS : official journal of the International Society for Pediatric Neurosurgery
PURPOSE: Intraventricular hemorrhage (IVH) is a common and severe complication in premature neonates, leading to long-term neurological impairments. Early prediction and identification of risk factors for IVH in premature neonates are crucial for imp...

Constructing small for gestational age prediction models: A retrospective machine learning study.

European journal of obstetrics, gynecology, and reproductive biology
OBJECTIVE: To develop machine learning prediction models for small for gestational age with baseline characteristics and biochemical tests of various pregnancy stages individually and collectively and compare predictive performance.

Prediction of fetal brain gestational age using multihead attention with Xception.

Computers in biology and medicine
Accurate gestational age (GA) prediction is crucial for monitoring fetal development and ensuring optimal prenatal care. Traditional methods often face challenges in terms of precision and prediction efficiency. In this context, leveraging modern dee...