AIMC Topic: Hospital Mortality

Clear Filters Showing 41 to 50 of 346 articles

External validation of an artificial intelligence model using clinical variables, including ICD-10 codes, for predicting in-hospital mortality among trauma patients: a multicenter retrospective cohort study.

Scientific reports
Artificial intelligence (AI) is being increasingly applied in healthcare to improve patient care and clinical outcomes. We previously developed an AI model using ICD-10 (International Classification of Diseases, Tenth Revision) codes with other clini...

An interpretable machine learning model for predicting in-hospital mortality in ICU patients with ventilator-associated pneumonia.

PloS one
BACKGROUND: Ventilator-associated pneumonia (VAP) is a common nosocomial infection in ICU, significantly associated with poor outcomes. However, there is currently a lack of reliable and interpretable tools for assessing the risk of in-hospital morta...

Employing a low-code machine learning approach to predict in-hospital mortality and length of stay in patients with community-acquired pneumonia.

Scientific reports
Community-acquired pneumonia (CAP) is associated with high mortality rates and often results in prolonged hospital stays. The potential of machine learning to enhance prediction accuracy in this context is significant, yet clinicians often lack the p...

Mortality prediction of inpatients with NSTEMI in a premier hospital in China based on stacking model.

PloS one
BACKGROUND: Acute myocardial infarction (AMI) remains a leading cause of hospitalization and death in China. Accurate mortality prediction of inpatient is crucial for clinical decision-making of non-ST-segment elevation myocardial infarction (NSTEMI)...

Robust multi-modal fusion architecture for medical data with knowledge distillation.

Computer methods and programs in biomedicine
BACKGROUND: The fusion of multi-modal data has been shown to significantly enhance the performance of deep learning models, particularly on medical data. However, missing modalities are common in medical data due to patient specificity, which poses a...

Machine Learning-Based Prediction Model for ICU Mortality After Continuous Renal Replacement Therapy Initiation in Children.

Critical care explorations
BACKGROUND: Continuous renal replacement therapy (CRRT) is the favored renal replacement therapy in critically ill patients. Predicting clinical outcomes for CRRT patients is difficult due to population heterogeneity, varying clinical practices, and ...

Machine Learning for In-hospital Mortality Prediction in Critically Ill Patients With Acute Heart Failure: A Retrospective Analysis Based on the MIMIC-IV Database.

Journal of cardiothoracic and vascular anesthesia
BACKGROUND: The incidence, mortality, and readmission rates for acute heart failure (AHF) are high, and the in-hospital mortality for AHF patients in the intensive care unit (ICU) is higher. However, there is currently no method to accurately predict...

Utility of an Echocardiographic Machine Learning Model to Predict Outcomes in Intensive Cardiac Care Unit Patients.

Journal of the American Society of Echocardiography : official publication of the American Society of Echocardiography
INTRODUCTION: The risk stratification at admission to the intensive cardiac care unit (ICCU) is crucial and remains challenging.

Machine Learning-Based Prediction for In-Hospital Mortality After Acute Intracerebral Hemorrhage Using Real-World Clinical and Image Data.

Journal of the American Heart Association
BACKGROUND: Machine learning (ML) techniques are widely employed across various domains to achieve accurate predictions. This study assessed the effectiveness of ML in predicting early mortality risk among patients with acute intracerebral hemorrhage...