AIMC Topic: Hospital Mortality

Clear Filters Showing 81 to 90 of 346 articles

A machine learning-based predictive model for the in-hospital mortality of critically ill patients with atrial fibrillation.

International journal of medical informatics
BACKGROUND: Atrial fibrillation (AF) is common among intensive care unit (ICU) patients and significantly raises the in-hospital mortality rate. Existing scoring systems or models have limited predictive capabilities for AF patients in ICU. Our study...

A Machine Learning Model for Predicting In-Hospital Mortality in Chinese Patients With ST-Segment Elevation Myocardial Infarction: Findings From the China Myocardial Infarction Registry.

Journal of medical Internet research
BACKGROUND: Machine learning (ML) risk prediction models, although much more accurate than traditional statistical methods, are inconvenient to use in clinical practice due to their nontransparency and requirement of a large number of input variables...

Evaluating the effectiveness of a sliding window technique in machine learning models for mortality prediction in ICU cardiac arrest patients.

International journal of medical informatics
Extensive research has been devoted to predicting ICU mortality, to assist clinical teams managing critical patients. Electronic health records (EHR) contain both static and dynamic medical data, with the latter accumulating during ICU stays. Existin...

Cluster analysis of thoracic muscle mass using artificial intelligence in severe pneumonia.

Scientific reports
Severe pneumonia results in high morbidity and mortality despite advanced treatments. This study investigates thoracic muscle mass from chest CT scans as a biomarker for predicting clinical outcomes in ICU patients with severe pneumonia. Analyzing el...

Development of machine learning models predicting mortality using routinely collected observational health data from 0-59 months old children admitted to an intensive care unit in Bangladesh: critical role of biochemistry and haematology data.

BMJ paediatrics open
INTRODUCTION: Treatment in the intensive care unit (ICU) generates complex data where machine learning (ML) modelling could be beneficial. Using routine hospital data, we evaluated the ability of multiple ML models to predict inpatient mortality in a...

ICURE: Intensive care unit (ICU) risk evaluation for 30-day mortality. Developing and evaluating a multivariable machine learning prediction model for patients admitted to the general ICU in Sweden.

Acta anaesthesiologica Scandinavica
BACKGROUND: A prediction model that estimates mortality at admission to the intensive care unit (ICU) is of potential benefit to both patients and society. Logistic regression models like Simplified Acute Physiology Score 3 (SAPS 3) and APACHE are th...

Prediction of in-hospital Mortality of Intensive Care Unit Patients with Acute Pancreatitis Based on an Explainable Machine Learning Algorithm.

Journal of clinical gastroenterology
BACKGROUND AND AIM: Acute pancreatitis (AP) is potentially fatal. Therefore, early identification of patients at a high mortality risk and timely intervention are essential. This study aimed to establish an explainable machine-learning model for pred...

Machine learning for the prediction of in-hospital mortality in patients with spontaneous intracerebral hemorrhage in intensive care unit.

Scientific reports
This study aimed to develop a machine learning (ML)-based tool for early and accurate prediction of in-hospital mortality risk in patients with spontaneous intracerebral hemorrhage (sICH) in the intensive care unit (ICU). We did a retrospective study...

Machine-learning clustering analysis identifies novel phenogroups in patients with ST-elevation acute myocardial infarction.

International journal of cardiology
BACKGROUND: Machine learning clustering of patients with ST-elevation acute myocardial infarction (STEMI) may provide important insights into their risk profile, management and prognosis.