AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Hydrocephalus

Showing 1 to 10 of 31 articles

Clear Filters

Classification Prediction of Hydrocephalus After Intercerebral Haemorrhage Based on Machine Learning Approach.

Neuroinformatics
In order to construct a clinical classification prediction model for hydrocephalus after intercerebral haemorrhage(ICH) to guide clinical treatment decisions, this paper retrospectively analyses the clinical data of 844 cases of ICH and hydrocephalus...

Does machine learning improve prediction accuracy of the Endoscopic Third Ventriculostomy Success Score? A contemporary Hydrocephalus Clinical Research Network cohort study.

Child's nervous system : ChNS : official journal of the International Society for Pediatric Neurosurgery
PURPOSE: This Hydrocephalus Clinical Research Network (HCRN) study had two aims: (1) to compare the predictive performance of the original ETV Success Score (ETVSS) using logistic regression modeling with other newer machine learning models and (2) t...

Revisiting the Endoscopic Third Ventriculostomy Success Score using machine learning: can we do better?

Journal of neurosurgery. Pediatrics
OBJECTIVE: The Endoscopic Third Ventriculostomy Success Score (ETVSS) is a useful decision-making heuristic when considering the probability of surgical success, defined traditionally as no repeat cerebrospinal fluid diversion surgery needed within 6...

The Value of Machine Learning Models in Predicting Factors Associated with the Need for Permanent Shunting in Patients with Intracerebral Hemorrhage Requiring Emergency Cerebrospinal Fluid Diversion.

World neurosurgery
OBJECTIVE: To assess the efficacy of machine learning models in identifying factors associated with the need for permanent ventricular shunt placement in patients experiencing intracerebral hemorrhage (ICH) who require emergency cerebrospinal fluid (...

Automated ventricular segmentation and shunt failure detection using convolutional neural networks.

Scientific reports
While ventricular shunts are the main treatment for adult hydrocephalus, shunt malfunction remains a common problem that can be challenging to diagnose. Computer vision-derived algorithms present a potential solution. We designed a feasibility study ...

Machine Learning-Based Prediction of Chronic Shunt-Dependent Hydrocephalus After Spontaneous Subarachnoid Hemorrhage.

World neurosurgery
BACKGROUND: Chronic posthemorrhagic hydrocephalus often arises following spontaneous subarachnoid hemorrhage (SAH). Timely identification of patients predisposed to develop chronic shunt-dependent hydrocephalus may significantly enhance clinical outc...

Machine learning in prenatal MRI predicts postnatal ventricular abnormalities in fetuses with isolated ventriculomegaly.

European radiology
OBJECTIVES: To evaluate the intracranial structures and brain parenchyma radiomics surrounding the occipital horn of the lateral ventricle in normal fetuses (NFs) and fetuses with ventriculomegaly (FVs), as well as to predict postnatally enlarged lat...

Deep learning-based quantification of total bleeding volume and its association with complications, disability, and death in patients with aneurysmal subarachnoid hemorrhage.

Journal of neurosurgery
OBJECTIVE: The relationships between immediate bleeding severity, postoperative complications, and long-term functional outcomes in patients with aneurysmal subarachnoid hemorrhage (aSAH) remain uncertain. Here, the authors apply their recently devel...

Early prediction of ventricular peritoneal shunt dependency in aneurysmal subarachnoid haemorrhage patients by recurrent neural network-based machine learning using routine intensive care unit data.

Journal of clinical monitoring and computing
Aneurysmal subarachnoid haemorrhage (aSAH) can lead to complications such as acute hydrocephalic congestion. Treatment of this acute condition often includes establishing an external ventricular drainage (EVD). However, chronic hydrocephalus develops...

A Soft Robotic Actuator System for In Vivo Modeling of Normal Pressure Hydrocephalus.

IEEE transactions on bio-medical engineering
OBJECTIVE: The intracranial pressure (ICP) affects the dynamics of cerebrospinal fluid (CSF) and its waveform contains information that is of clinical importance in medical conditions such as hydrocephalus. Active manipulation of the ICP waveform cou...