AIMC Topic: Image Processing, Computer-Assisted

Clear Filters Showing 61 to 70 of 9536 articles

Generative AI for weakly supervised segmentation and downstream classification of brain tumors on MR images.

Scientific reports
Segmenting abnormalities is a leading problem in medical imaging. Using machine learning for segmentation generally requires manually annotated segmentations, demanding extensive time and resources from radiologists. We propose a weakly supervised ap...

Automatic melanoma detection using an optimized five-stream convolutional neural network.

Scientific reports
Melanoma is among the deadliest forms of malignant skin cancer, with the number of cases increasing dramatically worldwide. Its early and accurate diagnosis is crucial for effective treatment. However, automatic melanoma detection has several signifi...

Deep-learning-based automated prediction of mouse seminiferous tubule stage by using bright-field microscopy.

Scientific reports
Infertility is a global issue, and approximately 50% of cases are due to male factors, with defective spermatogenesis being the main one. For studies of spermatogenesis, evaluating the seminiferous tubule stage is essential. However, current evaluati...

Enhancing occluded and standard bird object recognition using fuzzy-based ensembled computer vision approach with convolutional neural network.

Scientific reports
Classifying bird species is essential for ecological study and biodiversity protection, currently, conventional approaches are frequently laborious and susceptible to mistakes. Convolutional Neural Networks (CNNs) provide a more reliable option for f...

Deep learning model for hair artifact removal and Mpox skin lesion analysis and detection.

Scientific reports
Accurate identification of Mpox is essential for timely diagnosis and treatment. However, traditional image-based diagnostic methods often struggle with challenges such as body hair obscuring skin lesions and complicating accurate assessment. To addr...

Plant leaf disease detection using vision transformers for precision agriculture.

Scientific reports
Plant diseases cause major crop losses worldwide, making early detection essential for sustainable farming. Traditional methods need large training datasets, are expensive, and may overfit. In leaf image analysis, convolutional neural networks (CNNs)...

Design of a deep fusion model for early Parkinson's disease prediction using handwritten image analysis.

Scientific reports
Parkinson's Disease (PD) is a deteriorating condition that mostly affects older people. The lack of conclusive treatment for PD makes diagnosis very challenging. However, using patterns like tremors for early diagnosis, handwriting analysis has becom...

An adaptive deep learning approach based on InBNFus and CNNDen-GRU networks for breast cancer and maternal fetal classification using ultrasound images.

Scientific reports
Convolutional Neural Networks (CNNs), a sophisticated deep learning technique, have proven highly effective in identifying and classifying abnormalities related to various diseases. The manual classification of these is a hectic and time-consuming pr...

A deep learning approach to stress recognition through multimodal physiological signal image transformation.

Scientific reports
Stress is widely acknowledged as a significant contributor to health issues. Recognizing stress involves assessing an individual's physiological and psychological responses to stressors, which is crucial for human well-being. Physiological signal-bas...

A highly generalized federated learning algorithm for brain tumor segmentation.

Scientific reports
Brain image segmentation plays a pivotal role in modern healthcare by enabling precise diagnosis and treatment planning. Federated Learning (FL) enables collaborative model training across institutions while safeguarding sensitive patient data. The i...