AIMC Topic: Imaging, Three-Dimensional

Clear Filters Showing 251 to 260 of 1716 articles

Label refinement network from synthetic error augmentation for medical image segmentation.

Medical image analysis
Deep convolutional neural networks for image segmentation do not learn the label structure explicitly and may produce segmentations with an incorrect structure, e.g., with disconnected cylindrical structures in the segmentation of tree-like structure...

Using 3D point cloud and graph-based neural networks to improve the estimation of pulmonary function tests from chest CT.

Computers in biology and medicine
Pulmonary function tests (PFTs) are important clinical metrics to measure the severity of interstitial lung disease for systemic sclerosis patients. However, PFTs cannot always be performed by spirometry if there is a risk of disease transmission or ...

Detection of breast cancer in digital breast tomosynthesis with vision transformers.

Scientific reports
Digital Breast Tomosynthesis (DBT) has revolutionized more traditional breast imaging through its three-dimensional (3D) visualization capability that significantly enhances lesion discernibility, reduces tissue overlap, and improves diagnostic preci...

Deep learning-based segmentation for high-dose-rate brachytherapy in cervical cancer using 3D Prompt-ResUNet.

Physics in medicine and biology
To develop and evaluate a 3D Prompt-ResUNet module that utilized the prompt-based model combined with 3D nnUNet for rapid and consistent autosegmentation of high-risk clinical target volume (HRCTV) and organ at risk (OAR) in high-dose-rate brachyther...

DELR-Net: a network for 3D multimodal medical image registration in more lightweight application scenarios.

Abdominal radiology (New York)
PURPOSE: 3D multimodal medical image deformable registration plays a significant role in medical image analysis and diagnosis. However, due to the substantial differences between images of different modalities, registration is challenging and require...

Real-world application of a 3D deep learning model for detecting and localizing cerebral microbleeds.

Acta neurochirurgica
BACKGROUND: Detection and localization of cerebral microbleeds (CMBs) is crucial for disease diagnosis and treatment planning. However, CMB detection is labor-intensive, time-consuming, and challenging owing to its visual similarity to mimics. This s...

Cross-site Validation of AI Segmentation and Harmonization in Breast MRI.

Journal of imaging informatics in medicine
This work aims to perform a cross-site validation of automated segmentation for breast cancers in MRI and to compare the performance to radiologists. A three-dimensional (3D) U-Net was trained to segment cancers in dynamic contrast-enhanced axial MRI...

Reliability of brain volume measures of accelerated 3D T1-weighted images with deep learning-based reconstruction.

Neuroradiology
PURPOSE: The time-intensive nature of acquiring 3D T1-weighted MRI and analyzing brain volumetry limits quantitative evaluation of brain atrophy. We explore the feasibility and reliability of deep learning-based accelerated MRI scans for brain volume...

No-reference stereoscopic image quality assessment based on binocular collaboration.

Neural networks : the official journal of the International Neural Network Society
Stereoscopic images typically consist of left and right views along with depth information. Assessing the quality of stereoscopic/3D images (SIQA) is often more complex than that of 2D images due to scene disparities between the left and right views ...

A flexible 2.5D medical image segmentation approach with in-slice and cross-slice attention.

Computers in biology and medicine
Deep learning has become the de facto method for medical image segmentation, with 3D segmentation models excelling in capturing complex 3D structures and 2D models offering high computational efficiency. However, segmenting 2.5D images, characterized...