AIMC Topic: Incidental Findings

Clear Filters Showing 1 to 10 of 41 articles

[Incidental pulmonary nodules on CT imaging: what to do?].

Nederlands tijdschrift voor geneeskunde
Incidental pulmonary nodules are very frequently found on CT imaging and may represent (early stage) lung cancers without any signs or symptoms. These incidental findings can be solid lesions or ground glass lesions that may be solitary or multiple. ...

Leveraging Artificial Intelligence as a Safety Net for Incidentally Identified Lung Nodules at a Tertiary Center.

Journal of the American College of Surgeons
BACKGROUND: Artificial intelligence (AI)-powered platforms may be used to ensure that clinically significant lung nodules receive appropriate management. We studied the impact of a commercially available AI natural language processing tool on the det...

ScreenDx, an artificial intelligence-based algorithm for the incidental detection of pulmonary fibrosis.

The American journal of the medical sciences
BACKGROUND: Nonspecific symptoms and variability in radiographic reporting patterns contribute to a diagnostic delay of the diagnosis of pulmonary fibrosis. An attractive solution is the use of machine-learning algorithms to screen for radiographic f...

Automated identification of incidental hepatic steatosis on Emergency Department imaging using large language models.

Hepatology communications
BACKGROUND: Hepatic steatosis is a precursor to more severe liver disease, increasing morbidity and mortality risks. In the Emergency Department, routine abdominal imaging often reveals incidental hepatic steatosis that goes undiagnosed due to the ac...

Using natural language processing to identify emergency department patients with incidental lung nodules requiring follow-up.

Academic emergency medicine : official journal of the Society for Academic Emergency Medicine
OBJECTIVES: For emergency department (ED) patients, lung cancer may be detected early through incidental lung nodules (ILNs) discovered on chest CTs. However, there are significant errors in the communication and follow-up of incidental findings on E...

Enhancing Aortic Aneurysm Surveillance: Transformer Natural Language Processing for Flagging and Measuring in Radiology Reports.

Annals of vascular surgery
BACKGROUND: Incidental findings of aortic aneurysms (AAs) often go unreported, and established patients are frequently lost to follow-up. Natural language processing (NLP) offers a promising solution to address these issues. While rule-based NLP meth...

Implementation of an AI Algorithm in Clinical Practice to Reduce Missed Incidental Pulmonary Embolisms on Chest CT and Its Impact on Short-Term Survival.

Investigative radiology
OBJECTIVES: A substantial number of incidental pulmonary embolisms (iPEs) in computed tomography scans are missed by radiologists in their daily routine. This study analyzes the radiological reports of iPE cases before and after implementation of an ...

Clinical Impact of Radiologist's Alert System on Patient Care for High-risk Incidental CT Findings: A Machine Learning-Based Risk Factor Analysis.

Academic radiology
RATIONALE AND OBJECTIVES: Efficient communication between radiologists and clinicians ordering computed tomography (CT) examinations is crucial for managing high-risk incidental CT findings (ICTFs). Herein, we introduced a Radiologist's Alert and Pat...

A natural language processing-informed adrenal gland incidentaloma clinic improves guideline-based care.

World journal of surgery
INTRODUCTION: Adrenal gland incidentalomas (AGIs) are found in up to 5% of cross-sectional images. However, rates of guideline-based workup for AGIs are notoriously low. We sought to determine if a natural language processing (NLP)-informed AGI clini...