AIMC Topic: Infant, Premature

Clear Filters Showing 11 to 20 of 100 articles

Construction and SHAP interpretability analysis of a risk prediction model for feeding intolerance in preterm newborns based on machine learning.

BMC medical informatics and decision making
OBJECTIVE: To construct a highly accurate and interpretable feeding intolerance (FI) risk prediction model for preterm newborns based on machine learning (ML) to assist medical staff in clinical diagnosis.

Deep Learning Approaches for the Assessment of Germinal Matrix Hemorrhage Using Neonatal Head Ultrasound.

Sensors (Basel, Switzerland)
Germinal matrix hemorrhage (GMH) is a critical condition affecting premature infants, commonly diagnosed through cranial ultrasound imaging. This study presents an advanced deep learning approach for automated GMH grading using the YOLOv8 model. By a...

Machine-learning-based evaluation of the usefulness of lactate for predicting neonatal mortality in preterm infants.

Pediatrics and neonatology
BACKGROUND: Unlike in adult and pediatric patients, the usefulness of lactate in preterm infants has not been thoroughly discussed. This study aimed to evaluate whether the lactate level in the first hours of life is an important factor associated wi...

Predicting Outcomes of Preterm Neonates Post Intraventricular Hemorrhage.

International journal of molecular sciences
Intraventricular hemorrhage (IVH) in preterm neonates presents a high risk for developing posthemorrhagic ventricular dilatation (PHVD), a severe complication that can impact survival and long-term outcomes. Early detection of PHVD before clinical on...

Can deep learning classify cerebral ultrasound images for the detection of brain injury in very preterm infants?

European radiology
OBJECTIVES: Cerebral ultrasound (CUS) is the main imaging screening tool in preterm infants. The aim of this work is to develop deep learning (DL) models that classify normal vs abnormal CUS to serve as a computer-aided detection tool providing timel...

Risk factors for the time to development of retinopathy of prematurity in premature infants in Iran: a machine learning approach.

BMC ophthalmology
BACKGROUND: Retinopathy of prematurity (ROP), is a preventable leading cause of blindness in infants and is a condition in which the immature retina experiences abnormal blood vessel growth. The development of ROP is multifactorial; nevertheless, the...

Combining artificial intelligence and conventional statistics to predict bronchopulmonary dysplasia in very preterm infants using routinely collected clinical variables.

Pediatric pulmonology
BACKGROUND: Prematurity is the strongest predictor of bronchopulmonary dysplasia (BPD). Most previous studies investigated additional risk factors by conventional statistics, while the few studies applying artificial intelligence, and specifically ma...

Host-derived protein profiles of human neonatal meconium across gestational ages.

Nature communications
Meconium, a non-invasive biomaterial reflecting prenatal substance accumulation, could provide valuable insights into neonatal health. However, the comprehensive protein profile of meconium across gestational ages remains unclear. Here, we conducted ...

Automated detection of type 1 ROP, type 2 ROP and A-ROP based on deep learning.

Eye (London, England)
PURPOSE: To provide automatic detection of Type 1 retinopathy of prematurity (ROP), Type 2 ROP, and A-ROP by deep learning-based analysis of fundus images obtained by clinical examination using convolutional neural networks.