Although delayed cerebral ischemia (DCI) is a well-known complication after subarachnoid hemorrhage (SAH), there are no reliable biomarkers to predict DCI development. Matricellular proteins (MCPs) have been reported relevant to DCI and expected to b...
AJNR. American journal of neuroradiology
Dec 20, 2018
BACKGROUND AND PURPOSE: The rupture of an intracranial aneurysm is a serious incident, causing subarachnoid hemorrhage associated with high fatality and morbidity rates. Because the demand for radiologic examinations is steadily growing, physician fa...
Use of algorithms to generate synthetic cases might result in a misrepresentation of the entire population. Training an artificial neural network with a mix of real and synthetic data might lead to non-realistic prediction precision.
Purpose To develop and evaluate a supportive algorithm using deep learning for detecting cerebral aneurysms at time-of-flight MR angiography to provide a second assessment of images already interpreted by radiologists. Materials and Methods MR images...
OBJECTIVES: Anterior communicating artery (ACOM) aneurysms are the most common intracranial aneurysms, and predicting their rupture risk is challenging. We aimed to predict this risk using a two-layer feed-forward artificial neural network (ANN).
OBJECTIVE: To use natural language processing (NLP) in conjunction with the electronic medical record (EMR) to accurately identify patients with cerebral aneurysms and their matched controls.
INTRODUCTION: The author introduced a symptomatic cerebral vasospasm (SCV) prediction model built with freeware based on a 91-patient dataset. In a prospective test group of 22 patients at the same hospital, this model outperformed logistic regressio...
Journal of neuroimaging : official journal of the American Society of Neuroimaging
Jan 1, 2025
Intracranial aneurysms, with an annual incidence of 2%-3%, reflect a rare disease associated with significant mortality and morbidity risks when ruptured. Early detection, risk stratification of high-risk subgroups, and prediction of patient outcomes...
Purpose To develop a deep learning model for the morphologic measurement of unruptured intracranial aneurysms (UIAs) based on CT angiography (CTA) data and validate its performance using a multicenter dataset. Materials and Methods In this retrospect...
Artificial intelligence (AI) is increasingly significant in neurosurgery, enhancing differential diagnosis, preoperative evaluation, and surgical precision. A recent study in World Neurosurgery evaluated AI's role in aneurysm detection, comparing con...