AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Intracranial Hemorrhages

Showing 1 to 10 of 91 articles

Clear Filters

Prediction of Brain Cancer Occurrence and Risk Assessment of Brain Hemorrhage Using Hybrid Deep Learning Technique.

Cancer investigation
The prediction of brain cancer occurrence and risk assessment of brain hemorrhage using a hybrid deep learning (DL) technique is a critical area of research in medical imaging analysis. One prominent challenge in this field is the accurate identifica...

Prediction of Symptomatic Intracranial Hemorrhage Before Mechanical Thrombectomy Using Machine Learning in Patients with Anterior Circulation Large Vessel Occlusion.

World neurosurgery
BACKGROUND: Symptomatic intracranial hemorrhage (sICH) after mechanical thrombectomy (MT) is associated with worse outcomes. We sought to develop and internally validate a machine learning (ML) model to predict sICH prior to MT in patients with anter...

Deep-learning tool for early identification of non-traumatic intracranial hemorrhage etiology and application in clinical diagnostics based on computed tomography (CT) scans.

PeerJ
BACKGROUND: To develop an artificial intelligence system that can accurately identify acute non-traumatic intracranial hemorrhage (ICH) etiology (aneurysms, hypertensive hemorrhage, arteriovenous malformation (AVM), Moyamoya disease (MMD), cavernous ...

Automatic segmentation and volumetric analysis of intracranial hemorrhages in brain CT images.

European journal of radiology
BACKGROUND: Intracranial hemorrhages (ICH) are life-threatening conditions that require rapid detection and precise subtype classification. Automated segmentation and volumetric analysis using deep learning can enhance clinical decision-making.

Development of a Clinically Applicable Deep Learning System Based on Sparse Training Data to Accurately Detect Acute Intracranial Hemorrhage from Non-enhanced Head Computed Tomography.

Neurologia medico-chirurgica
Non-enhanced head computed tomography is widely used for patients presenting with head trauma or stroke, given acute intracranial hemorrhage significantly influences clinical decision-making. This study aimed to develop a deep learning algorithm, ref...

Deep-Learning Generated Synthetic Material Decomposition Images Based on Single-Energy CT to Differentiate Intracranial Hemorrhage and Contrast Staining Within 24 Hours After Endovascular Thrombectomy.

CNS neuroscience & therapeutics
AIMS: To develop a transformer-based generative adversarial network (trans-GAN) that can generate synthetic material decomposition images from single-energy CT (SECT) for real-time detection of intracranial hemorrhage (ICH) after endovascular thrombe...

Label-efficient sequential model-based weakly supervised intracranial hemorrhage segmentation in low-data non-contrast CT imaging.

Medical physics
BACKGROUND: In clinical settings, intracranial hemorrhages (ICH) are routinely diagnosed using non-contrast CT (NCCT) in emergency stroke imaging for severity assessment. However, compared to magnetic resonance imaging (MRI), ICH shows low contrast a...

CGNet: Few-shot learning for Intracranial Hemorrhage Segmentation.

Computerized medical imaging and graphics : the official journal of the Computerized Medical Imaging Society
In recent years, with the increasing attention from researchers towards medical imaging, deep learning-based image segmentation techniques have become mainstream in the field, requiring large amounts of manually annotated data. Annotating datasets fo...

Applying Conformal Prediction to a Deep Learning Model for Intracranial Hemorrhage Detection to Improve Trustworthiness.

Radiology. Artificial intelligence
Purpose To apply conformal prediction to a deep learning (DL) model for intracranial hemorrhage (ICH) detection and evaluate model performance in detection as well as model accuracy in identifying challenging cases. Materials and Methods This was a r...

Intracranial hemorrhage segmentation and classification framework in computer tomography images using deep learning techniques.

Scientific reports
By helping the neurosurgeon create treatment strategies that increase the survival rate, automotive diagnosis and CT (Computed Tomography) hemorrhage segmentation (CT) could be beneficial. Owing to the significance of medical image segmentation and t...