Investigative ophthalmology & visual science
Jan 2, 2025
PURPOSE: Descemet membrane endothelial keratoplasty (DMEK) has emerged as a novel approach in corneal transplantation over the past two decades. This study aims to identify predisposing risk factors for post-DMEK ocular hypertension (OHT) and develop...
UNLABELLED: One of the priority areas in healthcare is the concept of predictive, preventive and personalized medicine, which is based on an individualized approach to the patient, including before the onset of diseases such as glaucoma.
PURPOSE: To use neural network machine learning (ML) models to identify the most relevant ocular biomarkers for the diagnosis of primary open-angle glaucoma (POAG).
PURPOSE: This study uses deep neural network-generated rim-to-disc area ratio (RADAR) measurements and the disc damage likelihood scale (DDLS) to measure the rate of optic disc rim loss in a large cohort of glaucoma patients.
Translational vision science & technology
Jun 3, 2024
PURPOSE: To develop machine learning (ML) and deep learning (DL) models to predict glaucoma surgical outcomes, including postoperative intraocular pressure, use of ocular antihypertensive medications, and need for repeat surgery.
INTRODUCTION: The study hypothesizes that neural networks can be an effective tool for predicting treatment outcomes in patients with diabetic neovascular glaucoma (NVG), considering not only baseline intraocular pressure (IOP) values but also inflam...
The study of corneal biomechanics has become relevant in recent years due to its possible applications in the diagnosis, management, and treatment of various diseases such as glaucoma, keratorefractive surgery and different corneal diseases. The clin...
IMPORTANCE: Automated deep learning (DL) analyses of fundus photographs potentially can reduce the cost and improve the efficiency of reading center assessment of end points in clinical trials.
Translational vision science & technology
Nov 1, 2021
PURPOSE: To investigate whether a correction based on a Humphrey field analyzer (HFA) 24-2/30-2 visual field (VF) can improve the prediction performance of a deep learning model to predict the HFA 10-2 VF test from macular optical coherence tomograph...
PURPOSE: (1) To evaluate the performance of deep learning (DL) classifier in detecting glaucoma, based on wide-field swept-source optical coherence tomography (SS-OCT) images. (2) To assess the performance of DL-based fusion methods in diagnosing gla...