AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Lumbar Vertebrae

Showing 21 to 30 of 286 articles

Clear Filters

Role of Artificial intelligence model in prediction of low back pain using T2 weighted MRI of Lumbar spine.

F1000Research
BACKGROUND: Low back pain (LBP), the primary cause of disability, is the most common musculoskeletal disorder globally and the primary cause of disability. Magnetic resonance imaging (MRI) studies are inconclusive and less sensitive for identifying a...

Deep learning constrained compressed sensing reconstruction improves high-resolution three-dimensional (3D) T2-weighted turbo spin echo magnetic resonance imaging (MRI) of the lumbar spine.

Clinical radiology
AIM: We sought to assess the image quality of three-dimensional (3D) T2-weighted (T2w) turbo spin echo (TSE) sequences with deep learning (DL)-constrained compressed sensing (CS) reconstruction relative to a reference two-dimensional (2D) T2w TSE seq...

Developing predictive models for residual back pain after percutaneous vertebral augmentation treatment for osteoporotic thoracolumbar compression fractures based on machine learning technique.

Journal of orthopaedic surgery and research
BACKGROUND: Machine learning (ML) has been widely applied to predict the outcomes of numerous diseases. The current study aimed to develop a prognostic prediction model using machine learning algorithms and identify risk factors associated with resid...

Predictive accuracy of machine learning models for conservative treatment failure in thoracolumbar burst fractures.

BMC musculoskeletal disorders
BACKGROUND: The management of patients with thoracolumbar burst fractures remains a topic of debate, with conservative treatment being successful in most cases but not all. This study aimed to assess the utility of machine learning models (MLMs) in p...

Prediction of Bone Mineral Density based on Computer Tomography Images Using Deep Learning Model.

Gerontology
INTRODUCTION: The problem of population aging is intensifying worldwide. Osteoporosis has become an important cause affecting the health status of older populations. However, the diagnosis of osteoporosis and people's understanding of it are seriousl...

Development of a Dual-Plane MRI-Based Deep Learning Model to Assess the 1-Year Postoperative Outcomes in Lumbar Disc Herniation After Tubular Microdiscectomy.

Journal of magnetic resonance imaging : JMRI
BACKGROUND: Tubular microdiscectomy (TMD) is a treatment for lumbar disc herniation (LDH). Although the combination of MRI and deep learning (DL) has shown promise, its application in evaluating postoperative outcomes in TMD has not been fully explor...

Accuracy and safety evaluation of a novel artificial intelligence-based robotic system for autonomous spinal posterior decompression.

Neurosurgical focus
OBJECTIVE: This study aimed to introduce a novel artificial intelligence (AI)-based robotic system for autonomous planning of spinal posterior decompression and verify its accuracy through a cadaveric model.

Lumbar Radicular Pain in the Eyes of Artificial Intelligence: Can You 'Imagine' What I 'Feel'?

World neurosurgery
OBJECTIVE: Pain is a complex sensory and emotional experience that significantly impacts individuals' well-being. Lumbar radicular pain (LRP) is a prevalent neuropathic pain affecting 9.9% to 25% of the population annually. Accurate identification of...

Development of machine learning model for predicting prolonged operation time in lumbar stenosis undergoing posterior lumbar interbody fusion: a multicenter study.

The spine journal : official journal of the North American Spine Society
BACKGROUND CONTEXT: Longer posterior lumbar interbody fusion (PLIF) surgeries for individuals with lumbar spinal stenosis are linked to more complications and negatively affect recovery after the operation. Therefore, there is a critical need for a m...