Breast cancer detection remains one of the most challenging problems in medical imaging. We propose a novel hybrid model that integrates Convolutional Neural Networks (CNNs), Bidirectional Long Short-Term Memory (Bi-LSTM) networks, and EfficientNet-B...
The early detection of breast cancer, particularly in dense breast tissues, faces significant challenges with traditional imaging techniques such as mammography. This study utilizes a Near-infrared Scan (NIRscan) probe and an advanced convolutional n...
To investigate the potential of employing artificial intelligence (AI) -driven breast ultrasound analysis models for the classification of glandular tissue components (GTC) in dense breast tissue. A total of 1,848 healthy women with mammograms classi...
This study investigated a series of deep learning (DL) models for the objective assessment of four categories of mammographic breast density (e.g., fatty, scattered, heterogeneously dense, and extremely dense). A retrospective analysis was conducted ...
High-attenuation (HA) artifacts may lead to obscured subtle lesions and lesion over-estimation in digital breast tomosynthesis (DBT) imaging. High-attenuation artifact suppression (HAAS) is vital for widespread DBT applications in clinic. The convent...
European journal of cancer (Oxford, England : 1990)
Apr 1, 2025
BACKGROUND: Breast cancer (BC) is the most frequently diagnosed cancer and the leading cause of cancer death among women worldwide. Artificial intelligence (AI) shows promise for improving mammogram interpretation, especially in resource-limited sett...
RATIONALE AND OBJECTIVES: Accurate determination of human epidermal growth factor receptor 2 (HER2) expression is critical for guiding targeted therapy in breast cancer. This study aimed to develop and validate a deep learning (DL)-based decision-mak...
The rising global incidence of breast cancer and the persistent shortage of specialized radiologists have heightened the demand for innovative solutions in mammography screening. Artificial intelligence (AI) has emerged as a promising tool to bridge ...
Artificial intelligence (AI) improves the accuracy of mammography screening, but prospective evidence, particularly in a single-read setting, remains limited. This study compares the diagnostic accuracy of breast radiologists with and without AI-base...
Predicting low nuclear grade DCIS before surgery can improve treatment choices and patient care, thereby reducing unnecessary treatment. Due to the high heterogeneity of DCIS and the limitations of biopsies in fully characterizing tumors, current dia...
Join thousands of healthcare professionals staying informed about the latest AI breakthroughs in medicine. Get curated insights delivered to your inbox.