AIMC Topic: Models, Genetic

Clear Filters Showing 21 to 30 of 345 articles

Predicting cell type-specific epigenomic profiles accounting for distal genetic effects.

Nature communications
Understanding how genetic variants affect the epigenome is key to interpreting GWAS, yet profiling these effects across the non-coding genome remains challenging due to experimental scalability. This necessitates accurate computational models. Existi...

From Noise to Knowledge: Diffusion Probabilistic Model-Based Neural Inference of Gene Regulatory Networks.

Journal of computational biology : a journal of computational molecular cell biology
Understanding gene regulatory networks (GRNs) is crucial for elucidating cellular mechanisms and advancing therapeutic interventions. Original methods for GRN inference from bulk expression data often struggled with the high dimensionality and inhere...

Enhancing Gene Expression Predictions Using Deep Learning and Functional Annotations.

Genetic epidemiology
Transcriptome-wide association studies (TWAS) aim to uncover genotype-phenotype relationships through a two-stage procedure: predicting gene expression from genotypes using an expression quantitative trait locus (eQTL) data set, then testing the pred...

Interpreting cis-regulatory interactions from large-scale deep neural networks.

Nature genetics
The rise of large-scale, sequence-based deep neural networks (DNNs) for predicting gene expression has introduced challenges in their evaluation and interpretation. Current evaluations align DNN predictions with orthogonal experimental data, providin...

Machine learning can be as good as maximum likelihood when reconstructing phylogenetic trees and determining the best evolutionary model on four taxon alignments.

Molecular phylogenetics and evolution
Phylogenetic tree reconstruction with molecular data is important in many fields of life science research. The gold standard in this discipline is the phylogenetic tree reconstruction based on the Maximum Likelihood method. In this study, we present ...

Comparison of machine learning methods for genomic prediction of selected Arabidopsis thaliana traits.

PloS one
We present a comparison of machine learning methods for the prediction of four quantitative traits in Arabidopsis thaliana. High prediction accuracies were achieved on individuals grown under standardized laboratory conditions from the 1001 Arabidops...

A Secure High-Order Gene Interaction Detection Algorithm Based on Deep Neural Network.

IEEE/ACM transactions on computational biology and bioinformatics
Identifying high-order Single Nucleotide Polymorphism (SNP) interactions of additive genetic model is crucial for detecting complex disease gene-type and predicting pathogenic genes of various disorders. We present a novel framework for high-order ge...

Enhancing schizophrenia phenotype prediction from genotype data through knowledge-driven deep neural network models.

Genomics
This article explores deep learning model design, drawing inspiration from the omnigenic model and genetic heterogeneity concepts, to improve schizophrenia prediction using genotype data. It introduces an innovative three-step approach leveraging neu...

Reliable estimation of tree branch lengths using deep neural networks.

PLoS computational biology
A phylogenetic tree represents hypothesized evolutionary history for a set of taxa. Besides the branching patterns (i.e., tree topology), phylogenies contain information about the evolutionary distances (i.e. branch lengths) between all taxa in the t...

Current genomic deep learning models display decreased performance in cell type-specific accessible regions.

Genome biology
BACKGROUND: A number of deep learning models have been developed to predict epigenetic features such as chromatin accessibility from DNA sequence. Model evaluations commonly report performance genome-wide; however, cis regulatory elements (CREs), whi...