AIMC Topic: Models, Statistical

Clear Filters Showing 91 to 100 of 1262 articles

Application of Generative Artificial Intelligence in Predicting Membrane Partitioning of Drugs: Combining Denoising Diffusion Probabilistic Models and MD Simulations Reduces the Computational Cost to One-Third.

Journal of chemical theory and computation
The optimal interaction of drugs with plasma membranes and membranes of subcellular organelles is a prerequisite for desirable pharmacology. Importantly, for drugs targeting the transmembrane lipid-facing sites of integral membrane proteins, the rela...

Establishment of prediction model for mortality risk of pancreatic cancer: a retrospective study.

BMC medical informatics and decision making
BACKGROUND AND AIM: Pancreatic cancer possesses a high prevalence and mortality rate among other cancers. Despite the low survival rate of this cancer type, the early prediction of this disease has a crucial role in decreasing the mortality rate and ...

Statistical machine learning models for prediction of China's maritime emergency patients in dynamic: ARIMA model, SARIMA model, and dynamic Bayesian network model.

Frontiers in public health
INTRODUCTION: Rescuing individuals at sea is a pressing global public health issue, garnering substantial attention from emergency medicine researchers with a focus on improving prevention and control strategies. This study aims to develop a Dynamic ...

A new hybrid machine learning model for predicting the renewal life of patents.

PloS one
In almost every country, patents need to be renewed multiple times after they are granted. A patentee assesses the value of the patent and then pays a renewal fee to keep it active for another stipulated period. The factors that characterize the valu...

Development of a new prognostic model to predict pneumonia outcome using artificial intelligence-based chest radiograph results.

Scientific reports
This study aimed to develop a new simple and effective prognostic model using artificial intelligence (AI)-based chest radiograph (CXR) results to predict the outcomes of pneumonia. Patients aged > 18 years, admitted the treatment of pneumonia betwee...

deepAFT: A nonlinear accelerated failure time model with artificial neural network.

Statistics in medicine
The Cox regression model or accelerated failure time regression models are often used for describing the relationship between survival outcomes and potential explanatory variables. These models assume the studied covariates are connected to the survi...

Two-part predictive modeling for COVID-19 cases and deaths in the U.S.

PloS one
COVID-19 prediction has been essential in the aid of prevention and control of the disease. The motivation of this case study is to develop predictive models for COVID-19 cases and deaths based on a cross-sectional data set with a total of 28,955 obs...

Identifying patients with undiagnosed small intestinal neuroendocrine tumours in primary care using statistical and machine learning: model development and validation study.

British journal of cancer
BACKGROUND: Neuroendocrine tumours (NETs) are increasing in incidence, often diagnosed at advanced stages, and individuals may experience years of diagnostic delay, particularly when arising from the small intestine (SI). Clinical prediction models c...

Back to the Roots: Reconstructing Large and Complex Cranial Defects using an Image-based Statistical Shape Model.

Journal of medical systems
Designing implants for large and complex cranial defects is a challenging task, even for professional designers. Current efforts on automating the design process focused mainly on convolutional neural networks (CNN), which have produced state-of-the-...