AIMC Topic: Molecular Structure

Clear Filters Showing 141 to 150 of 329 articles

Efficient molecular encoders for virtual screening.

Drug discovery today. Technologies
Molecular representations encoding molecular structure information play critical roles in molecular virtual screening (VS). In order to improve VS performance, an abundance of molecular encoders have been developed and tested by various VS challenges...

Transfer learning enables the molecular transformer to predict regio- and stereoselective reactions on carbohydrates.

Nature communications
Organic synthesis methodology enables the synthesis of complex molecules and materials used in all fields of science and technology and represents a vast body of accumulated knowledge optimally suited for deep learning. While most organic reactions i...

A new diarylhexane and two new diarylpropanols from the roots of .

Natural product research
A new diarylhexane, kneglobularone B () and two new diarylpropanols, kneglobularols A - B () along with seven known compounds () were isolated and characterized from the roots of It is the first time to find arylpropyl quinone () and isoflavone () i...

Quantum machine learning using atom-in-molecule-based fragments selected on the fly.

Nature chemistry
First-principles-based exploration of chemical space deepens our understanding of chemistry and might help with the design of new molecules, materials or experiments. Due to the computational cost of quantum chemistry methods and the immense number o...

GLORYx: Prediction of the Metabolites Resulting from Phase 1 and Phase 2 Biotransformations of Xenobiotics.

Chemical research in toxicology
Predicting the structures of metabolites formed in humans can provide advantageous insights for the development of drugs and other compounds. Here we present GLORYx, which integrates machine learning-based site of metabolism (SoM) prediction with rea...

Comprehensive Prediction of Molecular Recognition in a Combinatorial Chemical Space Using Machine Learning.

ACS combinatorial science
In combinatorial chemical approaches, optimizing the composition and arrangement of building blocks toward a particular function has been done using a number of methods, including high throughput molecular screening, molecular evolution, and computat...

Discovery of Novel Inhibitors of a Critical Brain Enzyme Using a Homology Model and a Deep Convolutional Neural Network.

Journal of medicinal chemistry
Rare neglected diseases may be neglected but are hardly rare, affecting hundreds of millions of people around the world. Here, we present a hit identification approach using AtomNet, the world's first deep convolutional neural network for structure-b...

Can One Hear the Shape of a Molecule (from its Coulomb Matrix Eigenvalues)?

Journal of chemical information and modeling
Coulomb matrix eigenvalues (CMEs) are global 3D representations of molecular structure, which have been previously used to predict atomization energies, prioritize geometry searches, and interpret rotational spectra. The properties of the CME represe...

Machine Learning Platform to Discover Novel Growth Inhibitors of Neisseria gonorrhoeae.

Pharmaceutical research
PURPOSE: To advance fundamental biological and translational research with the bacterium Neisseria gonorrhoeae through the prediction of novel small molecule growth inhibitors via naïve Bayesian modeling methodology.