INTRODUCTION: Longitudinal magnetic resonance imaging (MRI) has an important role in multiple sclerosis (MS) diagnosis and follow-up. Specifically, the presence of new T2-w lesions on brain MR scans is considered a predictive biomarker for the diseas...
In conventional non-quantitative magnetic resonance imaging, image contrast is consistent within images, but absolute intensity can vary arbitrarily between scans. For quantitative analysis of intensity data, images are typically normalized to a cons...
The detection of new or enlarged white-matter lesions is a vital task in the monitoring of patients undergoing disease-modifying treatment for multiple sclerosis. However, the definition of 'new or enlarged' is not fixed, and it is known that lesion-...
The purpose of this paper is to evaluate the feasibility of diagnosing multiple sclerosis (MS) using optical coherence tomography (OCT) data and a support vector machine (SVM) as an automatic classifier. Forty-eight MS patients without symptoms of op...
Computerized medical imaging and graphics : the official journal of the Computerized Medical Imaging Society
Nov 27, 2019
We present the application of limited one-time sampling irregularity map (LOTS-IM): a fully automatic unsupervised approach to extract brain tissue irregularities in magnetic resonance images (MRI), for quantitatively assessing white matter hyperinte...
Numerous postural sway metrics have been shown to be sensitive to balance impairment and fall risk in individuals with MS. Yet, there are no guidelines concerning the most appropriate postural sway metrics to monitor impairment. This investigation im...
Neurological sciences : official journal of the Italian Neurological Society and of the Italian Society of Clinical Neurophysiology
Oct 28, 2019
Machine learning (ML) applied to patient-reported (PROs) and clinical-assessed outcomes (CAOs) could favour a more predictive and personalized medicine. Our aim was to confirm the important role of applying ML to PROs and CAOs of people with relapsin...
Machine learning classification is an attractive approach to automatically differentiate patients from healthy subjects, and to predict future disease outcomes. A clinically isolated syndrome (CIS) is often the first presentation of multiple sclerosi...