AIMC Topic: Mycobacterium tuberculosis

Clear Filters Showing 81 to 90 of 95 articles

Machine learning-enabled virtual screening indicates the anti-tuberculosis activity of aldoxorubicin and quarfloxin with verification by molecular docking, molecular dynamics simulations, and biological evaluations.

Briefings in bioinformatics
Drug resistance in Mycobacterium tuberculosis (Mtb) is a significant challenge in the control and treatment of tuberculosis, making efforts to combat the spread of this global health burden more difficult. To accelerate anti-tuberculosis drug discove...

An exploratory deep learning approach to investigate tuberculosis pathogenesis in nonhuman primate model: Combining automated radiological analysis with clinical and biomarkers data.

Journal of medical primatology
BACKGROUND: Tuberculosis (TB) kills approximately 1.6 million people yearly despite the fact anti-TB drugs are generally curative. Therefore, TB-case detection and monitoring of therapy, need a comprehensive approach. Automated radiological analysis,...

Scalable de novo classification of antibiotic resistance of Mycobacterium tuberculosis.

Bioinformatics (Oxford, England)
MOTIVATION: World Health Organization estimates that there were over 10 million cases of tuberculosis (TB) worldwide in 2019, resulting in over 1.4 million deaths, with a worrisome increasing trend yearly. The disease is caused by Mycobacterium tuber...

Identification of active molecules against Mycobacterium tuberculosis through machine learning.

Briefings in bioinformatics
Tuberculosis (TB) is an infectious disease caused by Mycobacterium tuberculosis (Mtb) and it has been one of the top 10 causes of death globally. Drug-resistant tuberculosis (XDR-TB), extensively resistant to the commonly used first-line drugs, has e...

An explainable machine learning platform for pyrazinamide resistance prediction and genetic feature identification of Mycobacterium tuberculosis.

Journal of the American Medical Informatics Association : JAMIA
OBJECTIVE: Tuberculosis is the leading cause of death from a single infectious agent. The emergence of antimicrobial resistant Mycobacterium tuberculosis strains makes the problem more severe. Pyrazinamide (PZA) is an important component for short-co...

A Deep Learning Approach to Antibiotic Discovery.

Cell
Due to the rapid emergence of antibiotic-resistant bacteria, there is a growing need to discover new antibiotics. To address this challenge, we trained a deep neural network capable of predicting molecules with antibacterial activity. We performed pr...

Recent Advancement in Predicting Subcellular Localization of Mycobacterial Protein with Machine Learning Methods.

Medicinal chemistry (Shariqah (United Arab Emirates))
Mycobacterium tuberculosis (MTB) can cause the terrible tuberculosis (TB), which is reported as one of the most dreadful epidemics. Although many biochemical molecular drugs have been developed to cope with this disease, the drug resistance-especiall...

Precision immunoprofiling to reveal diagnostic signatures for latent tuberculosis infection and reactivation risk stratification.

Integrative biology : quantitative biosciences from nano to macro
Latent tuberculosis infection (LTBI) is estimated in nearly one quarter of the world's population, and of those immunocompetent and infected ~10% will proceed to active tuberculosis (TB). Current diagnostics cannot definitively identify LTBI and prov...