AIMC Topic: Nerve Net

Clear Filters Showing 71 to 80 of 551 articles

Brain networks and intelligence: A graph neural network based approach to resting state fMRI data.

Medical image analysis
Resting-state functional magnetic resonance imaging (rsfMRI) is a powerful tool for investigating the relationship between brain function and cognitive processes as it allows for the functional organization of the brain to be captured without relying...

An Artificial Neural Network for Image Classification Inspired by the Aversive Olfactory Learning Neural Circuit in Caenorhabditis elegans.

Advanced science (Weinheim, Baden-Wurttemberg, Germany)
This study introduces an artificial neural network (ANN) for image classification task, inspired by the aversive olfactory learning neural circuit in Caenorhabditis elegans (C. elegans). Although artificial neural networks (ANNs) have demonstrated re...

Damage explains function in spiking neural networks representing central pattern generator.

Journal of neural engineering
Complex biological systems have evolved to control movement dynamics despite noisy and unpredictable inputs and processing delays that necessitate forward predictions. The staple example in vertebrates is the locomotor control emerging from interacti...

Adapting to time: Why nature may have evolved a diverse set of neurons.

PLoS computational biology
Brains have evolved diverse neurons with varying morphologies and dynamics that impact temporal information processing. In contrast, most neural network models use homogeneous units that vary only in spatial parameters (weights and biases). To explor...

Neural networks with optimized single-neuron adaptation uncover biologically plausible regularization.

PLoS computational biology
Neurons in the brain have rich and adaptive input-output properties. Features such as heterogeneous f-I curves and spike frequency adaptation are known to place single neurons in optimal coding regimes when facing changing stimuli. Yet, it is still u...

Time-Frequency functional connectivity alterations in Alzheimer's disease and frontotemporal dementia: An EEG analysis using machine learning.

Clinical neurophysiology : official journal of the International Federation of Clinical Neurophysiology
OBJECTIVE: Alzheimer's disease (AD) and frontotemporal dementia (FTD) are prevalent neurodegenerative diseases characterized by altered brain functional connectivity (FC), affecting over 100 million people worldwide. This study aims to identify disti...

Signed Curvature Graph Representation Learning of Brain Networks for Brain Age Estimation.

IEEE journal of biomedical and health informatics
Graph Neural Networks (GNNs) play a pivotal role in learning representations of brain networks for estimating brain age. However, the over-squashing impedes interactions between long-range nodes, hindering the ability of message-passing mechanism-bas...

A Machine learning classification framework using fused fractal property feature vectors for Alzheimer's disease diagnosis.

Brain research
Alzheimer's disease (AD) profoundly affects brain tissue and network structures. Analyzing the topological properties of these networks helps to understand the progression of the disease. Most studies focus on single-scale brain networks, but few add...

LCGNet: Local Sequential Feature Coupling Global Representation Learning for Functional Connectivity Network Analysis With fMRI.

IEEE transactions on medical imaging
Analysis of functional connectivity networks (FCNs) derived from resting-state functional magnetic resonance imaging (rs-fMRI) has greatly advanced our understanding of brain diseases, including Alzheimer's disease (AD) and attention deficit hyperact...

Brain Network Classification for Accurate Detection of Alzheimer's Disease via Manifold Harmonic Discriminant Analysis.

IEEE transactions on neural networks and learning systems
Mounting evidence shows that Alzheimer's disease (AD) manifests the dysfunction of the brain network much earlier before the onset of clinical symptoms, making its early diagnosis possible. Current brain network analyses treat high-dimensional networ...