AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Prostate

Showing 31 to 40 of 603 articles

Clear Filters

Multiparametric Ultrasound Imaging of Prostate Cancer Using Deep Neural Networks.

Ultrasound in medicine & biology
OBJECTIVE: A deep neural network (DNN) was trained to generate a multiparametric ultrasound (mpUS) volume from four input ultrasound-based modalities (acoustic radiation force impulse [ARFI] imaging, shear wave elasticity imaging [SWEI], quantitative...

A flexible 2.5D medical image segmentation approach with in-slice and cross-slice attention.

Computers in biology and medicine
Deep learning has become the de facto method for medical image segmentation, with 3D segmentation models excelling in capturing complex 3D structures and 2D models offering high computational efficiency. However, segmenting 2.5D images, characterized...

Assessing the Performance of Artificial Intelligence Assistance for Prostate MRI: A Two-Center Study Involving Radiologists With Different Experience Levels.

Journal of magnetic resonance imaging : JMRI
BACKGROUND: Artificial intelligence (AI) assistance may enhance radiologists' performance in detecting clinically significant prostate cancer (csPCa) on MRI. Further validation is needed for radiologists with different experiences.

A Novel Machine Learning-based Predictive Model of Clinically Significant Prostate Cancer and Online Risk Calculator.

Urology
OBJECTIVE: To create a machine-learning predictive model combining prostate imaging-reporting and data system (PI-RADS) score, PSA density, and clinical variables to predict clinically significant prostate cancer (csPCa).

Comparison of MRI artificial intelligence-guided cognitive fusion-targeted biopsy versus routine cognitive fusion-targeted prostate biopsy in prostate cancer diagnosis: a randomized controlled trial.

BMC medicine
BACKGROUND: Cognitive fusion MRI-guided targeted biopsy (cTB) has been widely used in the diagnosis of prostate cancer (PCa). However, cTB relies heavily on the operator's experience and confidence in MRI readings. Our objective was to compare the ca...

Minimizing prostate diffusion weighted MRI examination time through deep learning reconstruction.

Clinical imaging
PURPOSE: To study the diagnostic image quality of high b-value diffusion weighted images (DWI) derived from standard and variably reduced datasets reconstructed with a commercially available deep learning reconstruction (DLR) algorithm.

External Validation of a Previously Developed Deep Learning-based Prostate Lesion Detection Algorithm on Paired External and In-House Biparametric MRI Scans.

Radiology. Imaging cancer
Purpose To evaluate the performance of an artificial intelligence (AI) model in detecting overall and clinically significant prostate cancer (csPCa)-positive lesions on paired external and in-house biparametric MRI (bpMRI) scans and assess performanc...

Histopathology-driven prostate cancer identification: A VBIR approach with CLAHE and GLCM insights.

Computers in biology and medicine
Efficient extraction and analysis of histopathological images are crucial for accurate medical diagnoses, particularly for prostate cancer. This research enhances histopathological image reclamation by integrating Visual-Based Image Reclamation (VBIR...

Achieving accurate prostate auto-segmentation on CT in the absence of MR imaging.

Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology
BACKGROUND: Magnetic resonance imaging (MRI) is considered the gold standard for prostate segmentation. Computed tomography (CT)-based segmentation is prone to observer bias, potentially overestimating the prostate volume by ∼ 30 % compared to MRI. H...

MixUNETR: A U-shaped network based on W-MSA and depth-wise convolution with channel and spatial interactions for zonal prostate segmentation in MRI.

Neural networks : the official journal of the International Neural Network Society
Magnetic resonance imaging (MRI) plays a pivotal role in diagnosing and staging prostate cancer. Precise delineation of the peripheral zone (PZ) and transition zone (TZ) within prostate MRI is essential for accurate diagnosis and subsequent artificia...