AIMC Topic: Proton Therapy

Clear Filters Showing 31 to 40 of 87 articles

A denoising method based on deep learning for proton radiograph using energy resolved dose function.

Physics in medicine and biology
Proton radiograph has been broadly applied in proton radiotherapy which is affected by scattered protons which result in the lower spatial resolution of proton radiographs than that of x-ray images. Traditional image denoising method may lead to the ...

Deep learning-based synthetic dose-weighted LET map generation for intensity modulated proton therapy.

Physics in medicine and biology
The advantage of proton therapy as compared to photon therapy stems from the Bragg peak effect, which allows protons to deposit most of their energy directly at the tumor while sparing healthy tissue. However, even with such benefits, proton therapy ...

Feasibility of Monte Carlo dropout-based uncertainty maps to evaluate deep learning-based synthetic CTs for adaptive proton therapy.

Medical physics
BACKGROUND: Deep learning has shown promising results to generate MRI-based synthetic CTs and to enable accurate proton dose calculations on MRIs. For clinical implementation of synthetic CTs, quality assurance tools that verify their quality and rel...

Technical note: Evaluation of deep learning based synthetic CTs clinical readiness for dose and NTCP driven head and neck adaptive proton therapy.

Medical physics
BACKGROUND: Adaptive proton therapy workflows rely on accurate imaging throughout the treatment course. Our centre currently utilizes weekly repeat CTs (rCTs) for treatment monitoring and plan adaptations. However, deep learning-based methods have re...

Multimodal imaging-based material mass density estimation for proton therapy using supervised deep learning.

The British journal of radiology
OBJECTIVE: Mapping CT number to material property dominates the proton range uncertainty. This work aims to develop a physics-constrained deep learning-based multimodal imaging (PDMI) framework to integrate physics, deep learning, MRI, and advanced d...

Beam mask and sliding window-facilitated deep learning-based accurate and efficient dose prediction for pencil beam scanning proton therapy.

Medical physics
BACKGROUND: Accurate and efficient dose calculation is essential for on-line adaptive planning in proton therapy. Deep learning (DL) has shown promising dose prediction results in photon therapy. However, there is a scarcity of DL-based dose predicti...

Deep learning proton beam range estimation model for quality assurance based on two-dimensional scintillated light distributions in simulations.

Medical physics
BACKGROUND: Many studies have utilized optical camera systems with volumetric scintillators for quality assurances (QA) to estimate the proton beam range. However, previous analytically driven range estimation methods have the difficulty to derive th...

Automated treatment planning for proton pencil beam scanning using deep learning dose prediction and dose-mimicking optimization.

Journal of applied clinical medical physics
PURPOSE: The purpose of this study is to investigate the use of a deep learning architecture for automated treatment planning for proton pencil beam scanning (PBS).

Deep learning-based protoacoustic signal denoising for proton range verification.

Biomedical physics & engineering express
Proton therapy is a type of radiation therapy that can provide better dose distribution compared to photon therapy by delivering most of the energy at the end of range, which is called the Bragg peak (BP). The protoacoustic technique was developed to...