AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Xerostomia

Showing 1 to 8 of 8 articles

Clear Filters

Machine Learning Approaches for Predicting Radiation Therapy Outcomes: A Clinician's Perspective.

International journal of radiation oncology, biology, physics
Radiation oncology has always been deeply rooted in modeling, from the early days of isoeffect curves to the contemporary Quantitative Analysis of Normal Tissue Effects in the Clinic (QUANTEC) initiative. In recent years, medical modeling for both pr...

Early prediction of radiotherapy-induced parotid shrinkage and toxicity based on CT radiomics and fuzzy classification.

Artificial intelligence in medicine
MOTIVATION: Patients under radiotherapy for head-and-neck cancer often suffer of long-term xerostomia, and/or consistent shrinkage of parotid glands. In order to avoid these drawbacks, adaptive therapy can be planned for patients at risk, if the pred...

Technical note: Evaluation of deep learning based synthetic CTs clinical readiness for dose and NTCP driven head and neck adaptive proton therapy.

Medical physics
BACKGROUND: Adaptive proton therapy workflows rely on accurate imaging throughout the treatment course. Our centre currently utilizes weekly repeat CTs (rCTs) for treatment monitoring and plan adaptations. However, deep learning-based methods have re...

Prediction of xerostomia in elderly based on clinical characteristics and salivary flow rate with machine learning.

Scientific reports
Xerostomia may be accompanied by changes in salivary flow rate and the incidence increases in elderly. We aimed to use machine learning algorithms, to identify significant predictors for the presence of xerostomia. This study is the first to predict ...

Three-Dimensional Deep Learning Normal Tissue Complication Probability Model to Predict Late Xerostomia in Patients With Head and Neck Cancer.

International journal of radiation oncology, biology, physics
PURPOSE: Conventional normal tissue complication probability (NTCP) models for patients with head and neck cancer are typically based on single-value variables, which, for radiation-induced xerostomia, are baseline xerostomia and mean salivary gland ...

Evaluation of machine learning models for predicting xerostomia in adults with head and neck cancer during proton and heavy ion radiotherapy.

Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology
BACKGROUND AND PURPOSE: Few studies have examined the factors associated with xerostomia during proton and carbon ion radiotherapy for head and neck cancer (HNC), which are reported to have fewer toxic effects compared to traditional photon-based rad...

A comparison of different machine learning classifiers in predicting xerostomia and sticky saliva due to head and neck radiotherapy using a multi-objective, multimodal radiomics model.

Biomedical physics & engineering express
. Although radiotherapy techniques are a primary treatment for head and neck cancer (HNC), they are still associated with substantial toxicity and side effects. Machine learning (ML) based radiomics models for predicting toxicity mostly rely on featu...