AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Mendelian Randomization Analysis

Showing 1 to 10 of 27 articles

Clear Filters

Exploring new drug treatment targets for immune related bone diseases using a multi omics joint analysis strategy.

Scientific reports
In the field of treatment and prevention of immune-related bone diseases, significant challenges persist, necessitating the urgent exploration of new and effective treatment methods. However, most existing Mendelian randomization (MR) studies are con...

Analysis of shared pathogenic mechanisms and drug targets in myocardial infarction and gastric cancer based on transcriptomics and machine learning.

Frontiers in immunology
BACKGROUND: Recent studies have suggested a potential association between gastric cancer (GC) and myocardial infarction (MI), with shared pathogenic factors. This study aimed to identify these common factors and potential pharmacologic targets.

Machine learning approach on plasma proteomics identifies signatures associated with obesity in the KORA FF4 cohort.

Diabetes, obesity & metabolism
AIMS: This study investigated the role of plasma proteins in obesity to identify predictive biomarkers and explore underlying biological mechanisms.

Identifying Lipid Metabolism-Related Therapeutic Targets and Diagnostic Markers for Lung Adenocarcinoma by Mendelian Randomization and Machine Learning Analysis.

Thoracic cancer
BACKGROUND: Lipid metabolic disorders are emerging as a recognized influencing factors of lung adenocarcinoma (LUAD). This study aims to investigate the influence of lipid metabolism-related genes (LMRGs) on the diagnosis and treatment of LUAD and to...

Identification and Experimental Validation of NETosis-Mediated Abdominal Aortic Aneurysm Gene Signature Using Multi-omics, Machine Learning, and Mendelian Randomization.

Journal of chemical information and modeling
Abdominal aortic aneurysm (AAA) is a life-threatening disorder with limited therapeutic options. Neutrophil extracellular traps (NETs) are formed by a process known as "NETosis" that has been implicated in AAA pathogenesis, yet the roles and prognost...

Identification of a telomere-related gene signature for the prognostic and immune landscape prediction in head and neck squamous cell carcinoma by integrated analysis of machine learning and Mendelian randomization.

Medicine
Telomere-related genes (TRGs) are vital in diverse tumor types. Nevertheless, there is a notable lack of in-depth research concerning their significance in head and neck squamous cell carcinoma (HNSCC). In this context, the present study aims to asse...

Identification of biomarkers for endometriosis based on summary-data-based Mendelian randomization and machine learning.

Medicine
Endometriosis (EM) significantly impacts the quality of life, and its diagnosis currently relies on surgery, which carries risks and may miss early lesions. Noninvasive biomarkers are urgently needed for early diagnosis and personalized treatment. Th...

Exploring the potential biomarkers and potential causality of Ménière disease based on bioinformatics and machine learning.

Medicine
Meniere disease (MD) is a common inner ear disorder closely related to immune abnormalities, but research on the characteristic genes between MD and immune responses is still insufficient. We employ bioinformatics and machine learning to predict pote...

Unveiling new insights into migraine risk stratification using machine learning models of adjustable risk factors.

The journal of headache and pain
BACKGROUND: Migraine ranks as the second-leading cause of global neurological disability, affecting approximately 1.1 billion individuals worldwide with severe quality-of-life impairments. Although adjustable risk factors-including environmental expo...