AIMC Topic: Quantitative Trait Loci

Clear Filters Showing 21 to 30 of 83 articles

Comparison of machine learning methods for genomic prediction of selected Arabidopsis thaliana traits.

PloS one
We present a comparison of machine learning methods for the prediction of four quantitative traits in Arabidopsis thaliana. High prediction accuracies were achieved on individuals grown under standardized laboratory conditions from the 1001 Arabidops...

Analyzing Medicago spp. seed morphology using GWAS and machine learning.

Scientific reports
Alfalfa is widely recognized as an important forage crop. To understand the morphological characteristics and genetic basis of seed morphology in alfalfa, we screened 318 Medicago spp., including 244 Medicago sativa subsp. sativa (alfalfa) and 23 oth...

Integrated Assays of Genome-Wide Association Study, Multi-Omics Co-Localization, and Machine Learning Associated Calcium Signaling Genes with Oilseed Rape Resistance to .

International journal of molecular sciences
(Ss) is one of the most devastating fungal pathogens, causing huge yield loss in multiple economically important crops including oilseed rape. Plant resistance to Ss pertains to quantitative disease resistance (QDR) controlled by multiple minor gene...

Integrating Bioinformatics and Machine Learning for Genomic Prediction in Chickens.

Genes
Genomic prediction plays an increasingly important role in modern animal breeding, with predictive accuracy being a crucial aspect. The classical linear mixed model is gradually unable to accommodate the growing number of target traits and the increa...

Ridge regression and deep learning models for genome-wide selection of complex traits in New Mexican Chile peppers.

BMC genomic data
BACKGROUND: Genomewide prediction estimates the genomic breeding values of selection candidates which can be utilized for population improvement and cultivar development. Ridge regression and deep learning-based selection models were implemented for ...

Polygenic modelling and machine learning approaches in pharmacogenomics: Importance in downstream analysis of genome-wide association study data.

British journal of clinical pharmacology
Genome-wide association studies (GWAS) have identified genetic variations associated with adverse drug effects in pharmacogenomics (PGx) research. However, interpreting the biological implications of these associations remains a challenge. This revie...

deepGBLUP: joint deep learning networks and GBLUP framework for accurate genomic prediction of complex traits in Korean native cattle.

Genetics, selection, evolution : GSE
BACKGROUND: Genomic prediction has become widespread as a valuable tool to estimate genetic merit in animal and plant breeding. Here we develop a novel genomic prediction algorithm, called deepGBLUP, which integrates deep learning networks and a geno...

DeepBSA: A deep-learning algorithm improves bulked segregant analysis for dissecting complex traits.

Molecular plant
Bulked segregant analysis (BSA) is a rapid, cost-effective method for mapping mutations and quantitative trait loci (QTLs) in animals and plants based on high-throughput sequencing. However, the algorithms currently used for BSA have not been systema...

Deep learning predicts DNA methylation regulatory variants in the human brain and elucidates the genetics of psychiatric disorders.

Proceedings of the National Academy of Sciences of the United States of America
There is growing evidence for the role of DNA methylation (DNAm) quantitative trait loci (mQTLs) in the genetics of complex traits, including psychiatric disorders. However, due to extensive linkage disequilibrium (LD) of the genome, it is challengin...

Prediction of the importance of auxiliary traits using computational intelligence and machine learning: A simulation study.

PloS one
The present study evaluated the importance of auxiliary traits of a principal trait based on phenotypic information and previously known genetic structure using computational intelligence and machine learning to develop predictive tools for plant bre...