RATIONALE AND OBJECTIVES: Accurate assessment of hip morphology is crucial for the diagnosis and management of hip pathologies. Traditional manual measurements are prone to mistakes and inter- and intra-reader variability. Artificial intelligence (AI...
RATIONALE AND OBJECTIVES: To evaluate and compare image quality of different energy levels of virtual monochromatic images (VMIs) using standard versus strong deep learning spectral reconstruction (DLSR) on dual-energy CT pulmonary angiogram (DECT-PA...
RATIONALE AND OBJECTIVES: To develop and validate a multimodal deep learning (DL) model based on computed tomography (CT) images and clinical knowledge to predict lymph node metastasis (LNM) in early lung adenocarcinoma.
RATIONALE AND OBJECTIVES: Nasal polyps (NP) and inverted papilloma (IP) are benign tumors within the nasal cavity, each necessitating distinct treatment approaches. Herein, we investigate the utility of a deep learning (DL) model for distinguishing b...
BACKGROUND AND AIMS: The significance of left ventricular mass and chamber volumes from non-contrast computed tomography (CT) for predicting major adverse cardiovascular events (MACE) has not been studied. Our objective was to evaluate the role of ar...
OBJECTIVE: To assess whether CT style conversion between different CT vendors using a routable generative adversarial network (RouteGAN) could minimize variation in ILD quantification, resulting in improved functional correlation of quantitative CT (...
INTRODUCTION: A chest X-ray (CXR) is the most common imaging investigation performed worldwide. Advances in machine learning and computer vision technologies have led to the development of several artificial intelligence (AI) tools to detect abnormal...
Journal of X-ray science and technology
Dec 18, 2024
BACKGROUND: Computed tomography angiography (CTA) provides significant information on image quality in vascular imaging, thus offering high-resolution images despite having the disadvantages of increased radiation doses and contrast agent-related sid...
OBJECTIVES: We evaluated the noise reduction effects of deep learning reconstruction (DLR) and hybrid iterative reconstruction (HIR) in brain computed tomography (CT).
BMC medical informatics and decision making
Dec 18, 2024
BACKGROUND: The low tube-voltage technique (e.g., 80 kV) can efficiently reduce the radiation dose and increase the contrast enhancement of vascular and parenchymal structures in abdominal CT. However, a high tube current is always required in this s...