AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Radiographic Image Interpretation, Computer-Assisted

Showing 91 to 100 of 1175 articles

Clear Filters

Validation of AI-driven measurements for hip morphology assessment.

European journal of radiology
RATIONALE AND OBJECTIVES: Accurate assessment of hip morphology is crucial for the diagnosis and management of hip pathologies. Traditional manual measurements are prone to mistakes and inter- and intra-reader variability. Artificial intelligence (AI...

Multi-Energy Evaluation of Image Quality in Spectral CT Pulmonary Angiography Using Different Strength Deep Learning Spectral Reconstructions.

Academic radiology
RATIONALE AND OBJECTIVES: To evaluate and compare image quality of different energy levels of virtual monochromatic images (VMIs) using standard versus strong deep learning spectral reconstruction (DLSR) on dual-energy CT pulmonary angiogram (DECT-PA...

Multimodal Deep Learning Fusing Clinical and Radiomics Scores for Prediction of Early-Stage Lung Adenocarcinoma Lymph Node Metastasis.

Academic radiology
RATIONALE AND OBJECTIVES: To develop and validate a multimodal deep learning (DL) model based on computed tomography (CT) images and clinical knowledge to predict lymph node metastasis (LNM) in early lung adenocarcinoma.

Deep Learning Model for the Differential Diagnosis of Nasal Polyps and Inverted Papilloma by CT Images: A Multicenter Study.

Academic radiology
RATIONALE AND OBJECTIVES: Nasal polyps (NP) and inverted papilloma (IP) are benign tumors within the nasal cavity, each necessitating distinct treatment approaches. Herein, we investigate the utility of a deep learning (DL) model for distinguishing b...

AI-assisted detection for chest X-rays (AID-CXR): a multi-reader multi-case study protocol.

BMJ open
INTRODUCTION: A chest X-ray (CXR) is the most common imaging investigation performed worldwide. Advances in machine learning and computer vision technologies have led to the development of several artificial intelligence (AI) tools to detect abnormal...

Quantitative analysis of deep learning reconstruction in CT angiography: Enhancing CNR and reducing dose.

Journal of X-ray science and technology
BACKGROUND: Computed tomography angiography (CTA) provides significant information on image quality in vascular imaging, thus offering high-resolution images despite having the disadvantages of increased radiation doses and contrast agent-related sid...

Reduced-dose deep learning iterative reconstruction for abdominal computed tomography with low tube voltage and tube current.

BMC medical informatics and decision making
BACKGROUND: The low tube-voltage technique (e.g., 80 kV) can efficiently reduce the radiation dose and increase the contrast enhancement of vascular and parenchymal structures in abdominal CT. However, a high tube current is always required in this s...