Journal of medical engineering & technology
Dec 9, 2024
The conventional detection of COVID-19 by evaluating the CT scan images is tiresome, often experiences high inter-observer variability and uncertainty issues. This work proposes the automatic detection and classification of COVID-19 by analysing the ...
BACKGROUND: While deep learning classifiers have shown remarkable results in detecting chest X-ray (CXR) pathologies, their adoption in clinical settings is often hampered by the lack of transparency. To bridge this gap, this study introduces the neu...
IEEE journal of biomedical and health informatics
Dec 5, 2024
Self-supervised learning (SSL) reduces the need for manual annotation in deep learning models for medical image analysis. By learning the representations from unablelled data, self-supervised models perform well on tasks that require little to no fin...
Deep learning approaches for multi-label Chest X-ray (CXR) images classification usually require large-scale datasets. However, acquiring such datasets with full annotations is costly, time-consuming, and prone to noisy labels. Therefore, we introduc...
In this study, we developed a lightweight and rapid convolutional neural network (CNN) architecture for chest X-ray images; it primarily consists of a redesigned feature extraction (FE) module and multiscale feature (MF) module and validated using pu...
Medical & biological engineering & computing
Nov 29, 2024
Recent advancements in deep learning techniques have significantly improved multi-label chest X-ray (CXR) image classification for clinical diagnosis. However, most previous studies neither effectively learn label correlations nor take full advantage...
Echocardiography is the gold standard of diagnosis and evaluation of patent ductus arteriosus (PDA), a common condition among preterm infants that can cause hemodynamic abnormalities and increased mortality rates, but this technique requires a skille...
RATIONALE AND OBJECTIVES: Missed nodules in chest radiographs (CXRs) are common occurrences. We assessed the effect of artificial intelligence (AI) as a second reader on the accuracy of radiologists and non-radiology physicians in lung nodule detecti...
Lung disease analysis in chest X-rays (CXR) using deep learning presents significant challenges due to the wide variation in lung appearance caused by disease progression and differing X-ray settings. While deep learning models have shown remarkable ...
Journal of the American College of Radiology : JACR
Nov 19, 2024
OBJECTIVE: To assess whether the implementation of deep learning (DL) computer-aided detection (CAD) that screens for suspected pneumothorax (PTX) on chest radiography (CXR) combined with an electronic notification system (ENS) that simultaneously al...
Join thousands of healthcare professionals staying informed about the latest AI breakthroughs in medicine. Get curated insights delivered to your inbox.